//**************************************************************************** // Product: "Dining Philosophers Problem" example, cooperative Vanilla kernel // Last Updated for Version: 4.5.04 // Date of the Last Update: Feb 16, 2013 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Quantum Leaps Web sites: http://www.quantum-leaps.com // http://www.state-machine.com // e-mail: info@quantum-leaps.com //**************************************************************************** #include "qp_port.h" #include "dpp.h" #include "bsp.h" #include "lm4f_cmsis.h" #include "sysctl.h" #include "gpio.h" #include "rom.h" //**************************************************************************** namespace DPP { Q_DEFINE_THIS_FILE enum ISR_Priorities { // ISR priorities starting from the highest urgency GPIOPORTA_PRIO, SYSTICK_PRIO // ... }; // Local-scope objects ------------------------------------------------------- static uint32_t l_rnd; // random seed #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define USR_SW1 (1U << 4) #define USR_SW2 (1U << 0) #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; static uint8_t l_SysTick_Handler; static uint8_t l_GPIOPortA_IRQHandler; uint32_t const UART_BAUD_RATE = static_cast(115200U); uint32_t const UART_FR_TXFE = static_cast(0x80U); uint16_t const UART_TXFIFO_DEPTH = static_cast(16U); enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif //............................................................................ extern "C" void SysTick_Handler(void) { #ifdef Q_SPY { uint32_t dummy = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif QP::QF::TICK(&l_SysTick_Handler); // process all armed time events static uint32_t btn_debounced = USR_SW1; static uint8_t debounce_state = 0U; uint32_t btn = GPIOF->DATA_Bits[USR_SW1]; // read the user sw1 switch (debounce_state) { case 0: if (btn != btn_debounced) { debounce_state = 1U; // transition to the next state } break; case 1: if (btn != btn_debounced) { debounce_state = 2U; // transition to the next state } else { debounce_state = 0U; // transition back to state 0 } break; case 2: if (btn != btn_debounced) { debounce_state = 3U; // transition to the next state } else { debounce_state = 0U; // transition back to state 0 } break; case 3: if (btn != btn_debounced) { btn_debounced = btn; // save the debounced button value if (btn == 0U) { // is the button depressed? static QP::QEvt const pauseEvt = QEVT_INITIALIZER(PAUSE_SIG); QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { static QP::QEvt const pauseEvt = QEVT_INITIALIZER(PAUSE_SIG); QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler); } } debounce_state = 0U; // transition back to state 0 break; default: Q_ERROR(); break; } } //............................................................................ extern "C" void GPIOPortA_IRQHandler(void) { DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), // for testing &l_GPIOPortA_IRQHandler); } //............................................................................ void BSP_init(void) { // Enable the floating-point unit SCB->CPACR |= (0xFU << 20); // Enable lazy stacking for interrupt handlers. This allows FPU // instructions to be used within interrupt handlers, but at the // expense of extra stack and CPU usage. // FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos); // Set the clocking to run directly from the crystal ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // enable clock to the peripherals used by the application SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF asm(" MOV R0,R0"); // wait after enabling clocks asm(" MOV R0,R0"); // wait after enabling clocks asm(" MOV R0,R0"); // wait after enabling clocks // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED] = 0; // turn the LED off GPIOF->DATA_Bits[LED_GREEN] = 0; // turn the LED off GPIOF->DATA_Bits[LED_BLUE] = 0; // turn the LED off // configure the User Switches GPIOF->DIR &= ~(USR_SW1 | USR_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIO_PORTF_BASE, (USR_SW1 | USR_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); BSP_randomSeed(1234U); Q_ALLEGE(QS_INIT(static_cast(0))); QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); } //............................................................................ void BSP_displayPhilStat(uint8_t const n, char_t const * const stat) { GPIOF->DATA_Bits[LED_BLUE] = ((stat[0] == 'e') ? LED_BLUE : 0U); QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1U, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t const paused) { GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? LED_RED : 0U); } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // code for testing the hardware FPU... float volatile x = 3.1415926F; x = x + 2.7182818F; // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t const seed) { l_rnd = seed; } //............................................................................ void BSP_terminate(int16_t const result) { (void)result; } //............................................................................ extern "C" void Q_onAssert(char_t const Q_ROM * const Q_ROM_VAR file, int_t const line) { (void)file; // avoid compiler warning (void)line; // avoid compiler warning QF_INT_DISABLE(); // make sure that all interrupts are disabled for (;;) { // NOTE: replace the loop with reset for final version } } //............................................................................ // error routine that is called if the CMSIS library encounters an error extern "C" void assert_failed(char const *file, int line) { Q_onAssert(file, line); } } // namespace DPP //**************************************************************************** namespace QP { //............................................................................ void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate (void)SysTick_Config(ROM_SysCtlClockGet() / DPP::BSP_TICKS_PER_SEC); // set priorities of all interrupts in the system... NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(GPIOPortA_IRQn, DPP::GPIOPORTA_PRIO); NVIC_EnableIRQ(GPIOPortA_IRQn); } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QF::onIdle(void) { // called with interrupts disabled, see NOTE01 // toggle the User LED on and then off, see NOTE02 GPIOF->DATA_Bits[LED_GREEN] = LED_GREEN; // turn the Green LED on GPIOF->DATA_Bits[LED_GREEN] = 0; // turn the Green LED off #ifdef Q_SPY QF_INT_ENABLE(); if ((UART0->FR & DPP::UART_FR_TXFE) != 0U) { // TX done? uint16_t fifo = DPP::UART_TXFIFO_DEPTH; // max bytes we can accept QF_INT_DISABLE(); uint8_t const *block = QS::getBlock(&fifo); // try to get next block QF_INT_ENABLE(); while (fifo-- != 0) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // put the CPU and peripherals to the low-power mode // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. asm(" WFI"); // Wait-For-Interrupt #endif QF_INT_ENABLE(); /* always enable interrupts */ } //---------------------------------------------------------------------------- #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *) { static uint8_t qsBuf[6*256]; // buffer for Quantum Spy uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); // enable the peripherals used by the UART0 SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0 SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA asm(" MOV R0,R0"); // wait after enabling clocks asm(" MOV R0,R0"); // wait after enabling clocks asm(" MOV R0,R0"); // wait after enabling clocks // configure UART0 pins for UART operation tmp = (1 << 0) | (1 << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((ROM_SysCtlClockGet() * 8U) / DPP::UART_BAUD_RATE) + 1U) / 2U; UART0->IBRD = tmp / 64U; UART0->FBRD = tmp % 64U; UART0->LCRH = 0x60U; // configure 8-N-1 operation UART0->LCRH |= 0x10U; UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9); DPP::QS_tickPeriod_ = ROM_SysCtlClockGet() / DPP::BSP_TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_ALL_RECORDS); // QS_FILTER_OFF(QS_QEP_STATE_EMPTY); // QS_FILTER_OFF(QS_QEP_STATE_ENTRY); // QS_FILTER_OFF(QS_QEP_STATE_EXIT); // QS_FILTER_OFF(QS_QEP_STATE_INIT); // QS_FILTER_OFF(QS_QEP_INIT_TRAN); // QS_FILTER_OFF(QS_QEP_INTERN_TRAN); // QS_FILTER_OFF(QS_QEP_TRAN); // QS_FILTER_OFF(QS_QEP_IGNORED); // QS_FILTER_OFF(QS_QF_ACTIVE_ADD); // QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE); // QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE); // QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE); // QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO); // QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO); // QS_FILTER_OFF(QS_QF_ACTIVE_GET); // QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST); // QS_FILTER_OFF(QS_QF_EQUEUE_INIT); // QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO); // QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO); // QS_FILTER_OFF(QS_QF_EQUEUE_GET); // QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST); // QS_FILTER_OFF(QS_QF_MPOOL_INIT); // QS_FILTER_OFF(QS_QF_MPOOL_GET); // QS_FILTER_OFF(QS_QF_MPOOL_PUT); // QS_FILTER_OFF(QS_QF_PUBLISH); // QS_FILTER_OFF(QS_QF_NEW); // QS_FILTER_OFF(QS_QF_GC_ATTEMPT); // QS_FILTER_OFF(QS_QF_GC); // QS_FILTER_OFF(QS_QF_TICK); // QS_FILTER_OFF(QS_QF_TIMEEVT_ARM); // QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM); // QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT); // QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM); // QS_FILTER_OFF(QS_QF_TIMEEVT_REARM); // QS_FILTER_OFF(QS_QF_TIMEEVT_POST); QS_FILTER_OFF(QS_QF_CRIT_ENTRY); QS_FILTER_OFF(QS_QF_CRIT_EXIT); QS_FILTER_OFF(QS_QF_ISR_ENTRY); QS_FILTER_OFF(QS_QF_ISR_EXIT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // invoked with interrupts disabled QSTimeCtr ret = DPP::QS_tickTime_ - static_cast(SysTick->VAL); if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U) { // flag set? ret += DPP::QS_tickPeriod_; } return ret; } //............................................................................ void QS::onFlush(void) { uint16_t fifo = DPP::UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; while ((block = getBlock(&fifo)) != static_cast(0)) { // busy-wait until TX FIFO empty while ((UART0->FR & DPP::UART_FR_TXFE) == 0U) { } while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = DPP::UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE01: // The QF_onIdle() callback is called with interrupts disabled, because the // determination of the idle condition might change by any interrupt posting // an event. QF::onIdle() must internally enable interrupts, ideally // atomically with putting the CPU to the power-saving mode. // // NOTE02: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //