//**************************************************************************** // Product: "Blinky" example, EK-TM4C123GXL board, cooperative Vanilla kernel // Last updated for version 5.5.0 // Last updated on 2015-09-23 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "blinky.h" #include "bsp.h" #include "TM4C123GH6PM.h" // the device specific header (TI) #include "rom.h" // the built-in ROM functions (TI) #include "sysctl.h" // system control driver (TI) #include "gpio.h" // GPIO driver (TI) // add other drivers if necessary... #ifdef Q_SPY #error Simple Blinky Application does not provide Spy build configuration #endif //Q_DEFINE_THIS_FILE // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { SYSTICK_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- #define LED_RED (1U << 1) #define LED_GREEN (1U << 3) #define LED_BLUE (1U << 2) #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { QF::TICK_X(0U, (void *)0); // process time events for rate 0 } } // extern "C" // BSP functions ============================================================= void BSP_init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // configure the FPU usage by choosing one of the options... // Do NOT to use the automatic FPU state preservation and // do NOT to use the FPU lazy stacking. // // NOTE: // Use the following setting when FPU is used only by active objects // and NOT in any ISR. This setting is very efficient, but if any ISRs // start using the FPU, this can lead to corruption of the FPU registers. // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); // enable clock for to the peripherals used by this application... SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF // configure the LEDs and push buttons GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off // configure the Buttons GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2), GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); } //............................................................................ void BSP_ledOff(void) { GPIOF->DATA_Bits[LED_GREEN] = 0U; } //............................................................................ void BSP_ledOn(void) { // exercise the FPU with some floating point computations float volatile x = 3.1415926F; x = x + 2.7182818F; GPIOF->DATA_Bits[LED_GREEN] = 0xFFU; } // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); // ... // enable IRQs... } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QV::onIdle(void) { // CATION: called with interrupts DISABLED, NOTE01 // toggle LED2 on and then off, see NOTE01 GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; GPIOF->DATA_Bits[LED_BLUE] = 0x00U; #ifdef NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // QV_CPU_SLEEP(); // atomically go to sleep and enable interrupts #else QF_INT_ENABLE(); // just enable interrupts #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call any QF services. These ISRs // are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF services. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // The QV::onIdle() callback is called with interrupts disabled, because the // determination of the idle condition might change by any interrupt posting // an event. QV::onIdle() must internally enable interrupts, ideally // atomically with putting the CPU to the power-saving mode. // // NOTE02: // One of the LEDs is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //