///*************************************************************************** // Product: DPP example, NXP mbed-LPC1768 board, preemptive QK kernel // Last updated for version 5.5.0 // Last updated on 2015-09-23 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // http://www.state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "LPC17xx.h" // CMSIS-compliant header file for the MCU used // add other drivers if necessary... // namespace DPP ************************************************************* namespace DPP { Q_DEFINE_THIS_FILE // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { EINT0_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 SYSTICK_PRIO, // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- // LEDs available on the board #define LED_1 (1U << 18) // P1.18 #define LED_2 (1U << 20) // P1.20 #define LED_3 (1U << 21) // P1.21 #define LED_4 (1U << 23) // P1.23 // Push-Button wired externally to DIP8 (P0.6) #define BTN_EXT (1U << 6) // P0.6 static unsigned l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // event-source identifiers used for tracing static uint8_t const l_SysTick_Handler = 0U; static uint8_t const l_EINT0_IRQHandler = 0U; #define UART_BAUD_RATE 115200U #define UART_FR_TXFE 0x80U #define UART_TXFIFO_DEPTH 16U enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; QK_ISR_ENTRY(); // inform QK about entering an ISR #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = ~LPC_GPIO0->FIOPIN; // read P0 with the state of the Buttons tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_EXT) != 0U) { // debounced BTN_EXT state changed? if ((buttons.depressed & BTN_EXT) != 0U) { // is BTN_EXT depressed? static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { // the button is released static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler); } } QK_ISR_EXIT(); // inform QK about exiting an ISR } //............................................................................ void EINT0_IRQHandler(void); // prototype void EINT0_IRQHandler(void) { QK_ISR_ENTRY(); // inform QK about entering an ISR // for testing.. DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), &l_EINT0_IRQHandler); QK_ISR_EXIT(); // inform QK about exiting an ISR } } // extern "C" // BSP functions ============================================================= void BSP_init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // turn the GPIO clock on LPC_SC->PCONP |= (1U << 15); // setup the GPIO pin functions for the LEDs... LPC_PINCON->PINSEL3 &= ~(3U << 4); // LED_1: function P1.18 to GPIO LPC_PINCON->PINSEL3 &= ~(3U << 8); // LED_2: function P1.20 to GPIO LPC_PINCON->PINSEL3 &= ~(3U << 10); // LED_3: function P1.21 to GPIO LPC_PINCON->PINSEL3 &= ~(3U << 14); // LED_4: function P1.23 to GPIO // Set GPIO-P1 LED pins to output LPC_GPIO1->FIODIR |= (LED_1 | LED_2 | LED_3 | LED_4); // setup the GPIO pin function for the Button... LPC_PINCON->PINSEL0 &= ~(3U << 12); // function P0.6 to GPIO, pull-up // Set GPIO-P0 Button pin as input LPC_GPIO0->FIODIR &= ~BTN_EXT; BSP_randomSeed(1234U); if (QS_INIT((void *)0) == 0U) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_EINT0_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); } //............................................................................ void BSP_displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'h') { LPC_GPIO1->FIOSET = LED_1; // turn LED on } else { LPC_GPIO1->FIOCLR = LED_1; // turn LED off } if (stat[0] == 'e') { LPC_GPIO1->FIOSET = LED_2; // turn LED on } else { LPC_GPIO1->FIOCLR = LED_2; // turn LED off } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t paused) { if (paused != 0U) { LPC_GPIO1->FIOSET = LED_3; // turn LED on } else { LPC_GPIO1->FIOCLR = LED_3; // turn LED off } } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP_terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / DPP::BSP_TICKS_PER_SEC); // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(EINT0_IRQn, DPP::EINT0_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(EINT0_IRQn); } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QK::onIdle(void) { // toggle the User LED on and then off, see NOTE01 QF_INT_DISABLE(); LPC_GPIO1->FIOSET = LED_4; // turn LED on __NOP(); // a couple of NOPs to actually see the LED glow __NOP(); __NOP(); __NOP(); LPC_GPIO1->FIOCLR = LED_4; // turn LED off QF_INT_ENABLE(); #ifdef Q_SPY if ((LPC_UART0->LSR & 0x20U) != 0U) { // TX Holding Register empty? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept uint8_t const *block; QF_INT_DISABLE(); block = QS::getBlock(&fifo); // try to get next block to transmit QF_INT_ENABLE(); while (fifo-- != 0) { // any bytes in the block? LPC_UART0->THR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY static void UART0_setBaudrate(uint32_t baud); // helper function //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy initBuf(qsBuf, sizeof(qsBuf)); // setup the P0_2 UART0 TX pin LPC_PINCON->PINSEL0 &= ~(3U << 4); /* clear P0_2 function */ LPC_PINCON->PINSEL0 |= (1U << 4); /* P0_2 to UART function (TX) */ LPC_PINCON->PINMODE0 &= ~(3U << 4); /* P0_2 pull-up register */ // setup the P0_3 UART0 RX pin LPC_PINCON->PINSEL0 &= ~(3U << 6); /* clear P0_3 function */ LPC_PINCON->PINSEL0 |= (1U << 6); /* P0_3 to UART function (RX) */ LPC_PINCON->PINMODE0 &= ~(3U << 6); /* P0_3 pull-up register */ /* enable power to UART0 */ LPC_SC->PCONP |= (1U << 3); /* enable FIFOs and default RX trigger level */ LPC_UART0->FCR = (1U << 0) /* FIFO Enable - 0 = Disables, 1 = Enabled */ | (0U << 1) /* Rx Fifo Reset */ | (0U << 2) /* Tx Fifo Reset */ | (0U << 6); /* Rx irq trig: 0=1char, 1=4chars, 2=8chars, 3=14chars */ /* disable IRQs */ LPC_UART0->IER = (0U << 0) /* Rx Data available IRQ disable */ | (0U << 1) /* Tx Fifo empty IRQ disable */ | (0U << 2); /* Rx Line Status IRQ disable */ // set default baud rate UART0_setBaudrate(115200U); // format 8-data-bits, 1-stop-bit, parity-none LPC_UART0->LCR = (3U << 0) /* 8-data-bits */ | (0U << 2) /* 1 stop-bit */ | (0U << 3) /* parity disable */ | (0U << 4); /* parity none */ DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP_TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... QF_INT_ENABLE(); while ((LPC_UART0->LSR & 0x20U) == 0U) { // while THR empty... } LPC_UART0->THR = (b & 0xFFU); // put into the DR register } QF_INT_ENABLE(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a uesr command (to be implemented in BSP) void QS::onCommand(uint8_t cmdId, uint32_t param) { (void)cmdId; (void)param; //TBD } //............................................................................ /* * Set the LPC UART0 barud-rate generator according to * Section 14.4.12 in LPC176x Manual (document UM10360) */ static void UART0_setBaudrate(uint32_t baud) { /* First we check to see if the basic divide with no DivAddVal/MulVal * ratio gives us an integer result. If it does, we set DivAddVal = 0, * MulVal = 1. Otherwise, we search the valid ratio value range to find * the closest match. This could be more elegant, using search methods * and/or lookup tables, but the brute force method is not that much * slower, and is more maintainable. */ uint32_t PCLK = SystemCoreClock; /* divider /1 set below */ uint16_t DL = PCLK / (16U * baud); uint8_t DivAddVal = 0U; uint8_t MulVal = 1U; /* set PCLK divider to 1 */ LPC_SC->PCLKSEL0 &= ~(0x3U << 6); /* clear divider bits */ LPC_SC->PCLKSEL0 |= (0x1U << 6); /* set divider to 1 */ if ((PCLK % (16U * baud)) != 0U) { /* non zero remainder? */ uint32_t err_best = baud; bool found = false; uint32_t b; uint8_t mv; for (mv = 1U; mv < 16U && !found; mv++) { uint16_t dlv; uint8_t dav; for (dav = 0U; dav < mv; ++dav) { /* * baud = PCLK / (16 * dlv * (1 + (DivAdd / Mul)) * solving for dlv, we get * dlv = mul * PCLK / (16 * baud * (divadd + mul)) * mul has 4 bits, PCLK has 27 so we have 1 bit headroom, * which can be used for rounding for many values of mul * and PCLK we have 2 or more bits of headroom which can * be used to improve precision * note: X / 32 doesn't round correctly. * Instead, we use ((X / 16) + 1) / 2 for correct rounding */ if ((mv*PCLK*2U) & 0x80000000U) { /* 1 bit headroom */ dlv = ((((2U*mv*PCLK) / (baud*(dav + mv)))/16U) + 1U)/2U; } else { /* 2 bits headroom, use more precision */ dlv = ((((4U*mv*PCLK) / (baud*(dav+mv)))/32U) + 1U)/2U; } /* datasheet says if DLL==DLM==0, then 1 is used instead */ if (dlv == 0U) { dlv = 1U; } /* datasheet says if dav > 0 then DL must be >= 2 */ if ((dav > 0U) && (dlv < 2U)) { dlv = 2U; } /* integer rearrangement of baud equation (with rounding) */ b = ((PCLK*mv / (dlv*(dav + mv)*8U)) + 1U)/2U; b = (b >= baud) ? (b - baud) : (baud - b); /* check to see how we did */ if (b < err_best) { err_best = b; DL = dlv; MulVal = mv; DivAddVal = dav; if (b == baud) { found = true; break; /* break out of the inner for-loop */ } } } } } // set LCR[DLAB] to enable writing to divider registers LPC_UART0->LCR |= (1U << 7); // set divider values LPC_UART0->DLM = (DL >> 8) & 0xFFU; LPC_UART0->DLL = (DL >> 0) & 0xFFU; LPC_UART0->FDR = ((uint32_t)DivAddVal << 0) | ((uint32_t)MulVal << 4); // clear LCR[DLAB] LPC_UART0->LCR &= ~(1U << 7); } #endif // Q_SPY //--------------------------------------------------------------------------*/ } // namespace QP //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY // macros or any other QF/QK services. These ISRs are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they // can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //