//**************************************************************************** // Product: DPP example, STM32 NUCLEO-L152RE board, uC/OS-II kernel // Last updated for version 5.5.0 // Last updated on 2015-09-23 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // http://www.state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "stm32l1xx.h" // CMSIS-compliant header file for the MCU used // add other drivers if necessary... // namespace DPP ************************************************************* namespace DPP { Q_DEFINE_THIS_FILE // Local-scope objects ------------------------------------------------------- // LED pins available on the board (just one LED) #define LED_LD2 (1U << 5) // Button pins available on the board (just one Button) #define BTN_B1 (1U << 13) static unsigned l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // source IDs for QS for non-QP event producers static uint8_t const l_tickHook = 0U; static uint8_t const l_EXTI0_IRQHandler = 0U; #define UART_BAUD_RATE 115200U #define UART_FR_TXFE 0x80U #define UART_TXFIFO_DEPTH 16U enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif // ISRs used in this project ================================================= extern "C" { // example ISR handler for uCOS-II void EXTI0_IRQHandler(void); void EXTI0_IRQHandler(void) { #if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register OS_CPU_SR cpu_sr = 0u; #endif OS_ENTER_CRITICAL(); OSIntEnter(); // Tell uC/OS-II that we are starting an ISR OS_EXIT_CRITICAL(); // perform the application work... AO_Table->POST(Q_NEW(QP::QEvt, MAX_SIG), // for testing... &l_EXTI0_IRQHandler); OSIntExit(); // Tell uC/OS-II that we are leaving the ISR } // uCOS-II application hooks --=============================================== void App_TaskCreateHook (OS_TCB *ptcb) { (void)ptcb; } void App_TaskDelHook (OS_TCB *ptcb) { (void)ptcb; } //............................................................................ void App_TaskIdleHook(void) { #if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register OS_CPU_SR cpu_sr = 0u; #endif // toggle LED2 on and then off, see NOTE01, not enough LEDs to implement OS_ENTER_CRITICAL(); //GPIOA->BSRRL |= LED_LD2; // turn LED on //GPIOA->BSRRH |= LED_LD2; // turn LED off OS_EXIT_CRITICAL(); #ifdef Q_SPY if ((USART2->SR & 0x0080U) != 0) { // is TXE empty? OS_ENTER_CRITICAL(); uint16_t b = QP::QS::getByte(); OS_EXIT_CRITICAL(); if (b != QP::QS_EOD) { // not End-Of-Data? USART2->DR = (b & 0xFFU); // put into the DR register } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // // !!!CAUTION!!! // The WFI instruction stops the CPU clock, which unfortunately disables // the JTAG port, so the ST-Link debugger can no longer connect to the // board. For that reason, the call to __WFI() has to be used with caution. // // NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and // reset the board, then connect with ST-Link Utilities and erase the part. // The trick with BOOT(0) is it gets the part to run the System Loader instead // of your broken code. When done disconnect BOOT0, and start over. // //__WFI(); // Wait-For-Interrupt #endif } //............................................................................ void App_TaskReturnHook (OS_TCB *ptcb) { (void)ptcb; } void App_TaskStatHook (void) {} void App_TaskSwHook (void) {} void App_TCBInitHook (OS_TCB *ptcb) { (void)ptcb; } //............................................................................ void App_TimeTickHook(void) { uint32_t tmp; #ifdef Q_SPY tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover #endif QP::QF::TICK_X(0U, &l_tickHook); // process time events for rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; // state of the button debouncing uint32_t current = ~GPIOC->IDR; // read button B1 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_B1) != 0U) { // debounced B1 state changed? if ((buttons.depressed & BTN_B1) != 0U) { // is B1 depressed? static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_tickHook); } else { // the button is released static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_tickHook); } } } } // extern "C" // BSP functions ============================================================= void BSP_init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // enable GPIOA clock for the LED RCC->AHBENR |= (1U << 0); // configure LED (PA.5) pin as push-pull outputs, No pull-up, pull-down GPIOA->MODER &= ~((3U << 2*5)); GPIOA->MODER |= ((1U << 2*5)); GPIOA->OTYPER &= ~((1U << 5)); GPIOA->OSPEEDR &= ~((3U << 2*5)); GPIOA->OSPEEDR |= ((1U << 2*5)); GPIOA->PUPDR &= ~((3U << 2*5)); // enable GPIOC clock for the Button RCC->AHBENR |= (1ul << 2); // configure BTN (PC.13) pin as push-pull outputs, No pull-up, pull-down GPIOC->MODER &= ~(3ul << 2*13); GPIOC->OSPEEDR &= ~(3ul << 2*13); GPIOC->OSPEEDR |= (1ul << 2*13); GPIOC->PUPDR &= ~(3ul << 2*13); BSP_randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_tickHook); QS_OBJ_DICTIONARY(&l_EXTI0_IRQHandler); } //............................................................................ void BSP_displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'e') { GPIOA->BSRRL |= LED_LD2; // turn LED on } else { GPIOA->BSRRH |= LED_LD2; // turn LED off } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t paused) { // not enough LEDs to show the "Paused" status if (paused != (uint8_t)0) { //GPIOA->BSRRL |= LED_LD2; // turn LED on } else { //GPIOA->BSRRH |= LED_LD2; // turn LED off } } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP_terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { QF_CRIT_STAT_TYPE cpu_sr; QF_CRIT_ENTRY(cpu_sr); // DISABLED interrupts // initialize the system clock tick... OS_CPU_SysTickInit(SystemCoreClock / OS_TICKS_PER_SEC); // set priorities of the ISRs used in the system NVIC_SetPriority(EXTI0_IRQn, 0xFFU); // ... // enable IRQs in the NVIC... NVIC_EnableIRQ(EXTI0_IRQn); // NOTE: do not exit the critical section and leave interrupts DISABLED (void)cpu_sr; // avoid compiler warning about unused variable } //............................................................................ void QF::onCleanup(void) { } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY #define __DIV(__PCLK, __BAUD) (((__PCLK / 4) *25)/(__BAUD)) #define __DIVMANT(__PCLK, __BAUD) (__DIV(__PCLK, __BAUD)/100) #define __DIVFRAQ(__PCLK, __BAUD) \ (((__DIV(__PCLK, __BAUD) - (__DIVMANT(__PCLK, __BAUD) * 100)) \ * 16 + 50) / 100) #define __USART_BRR(__PCLK, __BAUD) \ ((__DIVMANT(__PCLK, __BAUD) << 4)|(__DIVFRAQ(__PCLK, __BAUD) & 0x0F)) //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy initBuf(qsBuf, sizeof(qsBuf)); // enable peripheral clock for USART2 RCC->AHBENR |= (1U << 0); // Enable GPIOA clock RCC->APB1ENR |= (1U << 17); // Enable USART#2 clock // Configure PA3 to USART2_RX, PA2 to USART2_TX GPIOA->AFR[0] &= ~((15U << 4*3) | (15U << 4*2)); GPIOA->AFR[0] |= (( 7U << 4*3) | ( 7U << 4*2)); GPIOA->MODER &= ~(( 3U << 2*3) | ( 3U << 2*2)); GPIOA->MODER |= (( 2U << 2*3) | ( 2U << 2*2)); USART2->BRR = __USART_BRR(SystemCoreClock, 115200U); // baud rate USART2->CR3 = 0x0000U; // no flow control USART2->CR2 = 0x0000U; // 1 stop bit USART2->CR1 = ((1U << 2) | // enable RX (1U << 3) | // enable TX (0U << 12) | // 1 start bit, 8 data bits (1U << 13)); // enable USART DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP_TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; #if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register OS_CPU_SR cpu_sr = 0u; #endif OS_ENTER_CRITICAL(); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... OS_EXIT_CRITICAL(); while ((USART2->SR & 0x0080U) == 0U) { // while TXE not empty } USART2->DR = (b & 0xFFU); // put into the DR register } OS_EXIT_CRITICAL(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a uesr command (to be implemented in BSP) void QS::onCommand(uint8_t cmdId, uint32_t param) { (void)cmdId; (void)param; //TBD } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //