//****************************************************************************
// Product: DPP example, STM32 NUCLEO-L152RE board, uC/OS-II kernel
// Last updated for version 5.5.0
// Last updated on 2015-09-23
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Contact information:
// http://www.state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "stm32l1xx.h" // CMSIS-compliant header file for the MCU used
// add other drivers if necessary...
// namespace DPP *************************************************************
namespace DPP {
Q_DEFINE_THIS_FILE
// Local-scope objects -------------------------------------------------------
// LED pins available on the board (just one LED)
#define LED_LD2 (1U << 5)
// Button pins available on the board (just one Button)
#define BTN_B1 (1U << 13)
static unsigned l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// source IDs for QS for non-QP event producers
static uint8_t const l_tickHook = 0U;
static uint8_t const l_EXTI0_IRQHandler = 0U;
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE 0x80U
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER
};
#endif
// ISRs used in this project =================================================
extern "C" {
// example ISR handler for uCOS-II
void EXTI0_IRQHandler(void);
void EXTI0_IRQHandler(void) {
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
OS_CPU_SR cpu_sr = 0u;
#endif
OS_ENTER_CRITICAL();
OSIntEnter(); // Tell uC/OS-II that we are starting an ISR
OS_EXIT_CRITICAL();
// perform the application work...
AO_Table->POST(Q_NEW(QP::QEvt, MAX_SIG), // for testing...
&l_EXTI0_IRQHandler);
OSIntExit(); // Tell uC/OS-II that we are leaving the ISR
}
// uCOS-II application hooks --===============================================
void App_TaskCreateHook (OS_TCB *ptcb) { (void)ptcb; }
void App_TaskDelHook (OS_TCB *ptcb) { (void)ptcb; }
//............................................................................
void App_TaskIdleHook(void) {
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
OS_CPU_SR cpu_sr = 0u;
#endif
// toggle LED2 on and then off, see NOTE01, not enough LEDs to implement
OS_ENTER_CRITICAL();
//GPIOA->BSRRL |= LED_LD2; // turn LED on
//GPIOA->BSRRH |= LED_LD2; // turn LED off
OS_EXIT_CRITICAL();
#ifdef Q_SPY
if ((USART2->SR & 0x0080U) != 0) { // is TXE empty?
OS_ENTER_CRITICAL();
uint16_t b = QP::QS::getByte();
OS_EXIT_CRITICAL();
if (b != QP::QS_EOD) { // not End-Of-Data?
USART2->DR = (b & 0xFFU); // put into the DR register
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
//
// !!!CAUTION!!!
// The WFI instruction stops the CPU clock, which unfortunately disables
// the JTAG port, so the ST-Link debugger can no longer connect to the
// board. For that reason, the call to __WFI() has to be used with caution.
//
// NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
// reset the board, then connect with ST-Link Utilities and erase the part.
// The trick with BOOT(0) is it gets the part to run the System Loader instead
// of your broken code. When done disconnect BOOT0, and start over.
//
//__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
void App_TaskReturnHook (OS_TCB *ptcb) { (void)ptcb; }
void App_TaskStatHook (void) {}
void App_TaskSwHook (void) {}
void App_TCBInitHook (OS_TCB *ptcb) { (void)ptcb; }
//............................................................................
void App_TimeTickHook(void) {
uint32_t tmp;
#ifdef Q_SPY
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
#endif
QP::QF::TICK_X(0U, &l_tickHook); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U }; // state of the button debouncing
uint32_t current = ~GPIOC->IDR; // read button B1
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & BTN_B1) != 0U) { // debounced B1 state changed?
if ((buttons.depressed & BTN_B1) != 0U) { // is B1 depressed?
static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_tickHook);
}
else { // the button is released
static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_tickHook);
}
}
}
} // extern "C"
// BSP functions =============================================================
void BSP_init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// enable GPIOA clock for the LED
RCC->AHBENR |= (1U << 0);
// configure LED (PA.5) pin as push-pull outputs, No pull-up, pull-down
GPIOA->MODER &= ~((3U << 2*5));
GPIOA->MODER |= ((1U << 2*5));
GPIOA->OTYPER &= ~((1U << 5));
GPIOA->OSPEEDR &= ~((3U << 2*5));
GPIOA->OSPEEDR |= ((1U << 2*5));
GPIOA->PUPDR &= ~((3U << 2*5));
// enable GPIOC clock for the Button
RCC->AHBENR |= (1ul << 2);
// configure BTN (PC.13) pin as push-pull outputs, No pull-up, pull-down
GPIOC->MODER &= ~(3ul << 2*13);
GPIOC->OSPEEDR &= ~(3ul << 2*13);
GPIOC->OSPEEDR |= (1ul << 2*13);
GPIOC->PUPDR &= ~(3ul << 2*13);
BSP_randomSeed(1234U);
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_tickHook);
QS_OBJ_DICTIONARY(&l_EXTI0_IRQHandler);
}
//............................................................................
void BSP_displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'e') {
GPIOA->BSRRL |= LED_LD2; // turn LED on
}
else {
GPIOA->BSRRH |= LED_LD2; // turn LED off
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP_displayPaused(uint8_t paused) {
// not enough LEDs to show the "Paused" status
if (paused != (uint8_t)0) {
//GPIOA->BSRRL |= LED_LD2; // turn LED on
}
else {
//GPIOA->BSRRH |= LED_LD2; // turn LED off
}
}
//............................................................................
uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
//............................................................................
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP_terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
QF_CRIT_STAT_TYPE cpu_sr;
QF_CRIT_ENTRY(cpu_sr); // DISABLED interrupts
// initialize the system clock tick...
OS_CPU_SysTickInit(SystemCoreClock / OS_TICKS_PER_SEC);
// set priorities of the ISRs used in the system
NVIC_SetPriority(EXTI0_IRQn, 0xFFU);
// ...
// enable IRQs in the NVIC...
NVIC_EnableIRQ(EXTI0_IRQn);
// NOTE: do not exit the critical section and leave interrupts DISABLED
(void)cpu_sr; // avoid compiler warning about unused variable
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast(10000U));
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
#define __DIV(__PCLK, __BAUD) (((__PCLK / 4) *25)/(__BAUD))
#define __DIVMANT(__PCLK, __BAUD) (__DIV(__PCLK, __BAUD)/100)
#define __DIVFRAQ(__PCLK, __BAUD) \
(((__DIV(__PCLK, __BAUD) - (__DIVMANT(__PCLK, __BAUD) * 100)) \
* 16 + 50) / 100)
#define __USART_BRR(__PCLK, __BAUD) \
((__DIVMANT(__PCLK, __BAUD) << 4)|(__DIVFRAQ(__PCLK, __BAUD) & 0x0F))
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy
initBuf(qsBuf, sizeof(qsBuf));
// enable peripheral clock for USART2
RCC->AHBENR |= (1U << 0); // Enable GPIOA clock
RCC->APB1ENR |= (1U << 17); // Enable USART#2 clock
// Configure PA3 to USART2_RX, PA2 to USART2_TX
GPIOA->AFR[0] &= ~((15U << 4*3) | (15U << 4*2));
GPIOA->AFR[0] |= (( 7U << 4*3) | ( 7U << 4*2));
GPIOA->MODER &= ~(( 3U << 2*3) | ( 3U << 2*2));
GPIOA->MODER |= (( 2U << 2*3) | ( 2U << 2*2));
USART2->BRR = __USART_BRR(SystemCoreClock, 115200U); // baud rate
USART2->CR3 = 0x0000U; // no flow control
USART2->CR2 = 0x0000U; // 1 stop bit
USART2->CR1 = ((1U << 2) | // enable RX
(1U << 3) | // enable TX
(0U << 12) | // 1 start bit, 8 data bits
(1U << 13)); // enable USART
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP_TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(DPP::PHILO_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
OS_CPU_SR cpu_sr = 0u;
#endif
OS_ENTER_CRITICAL();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
OS_EXIT_CRITICAL();
while ((USART2->SR & 0x0080U) == 0U) { // while TXE not empty
}
USART2->DR = (b & 0xFFU); // put into the DR register
}
OS_EXIT_CRITICAL();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
//TBD
}
//............................................................................
//! callback function to execute a uesr command (to be implemented in BSP)
void QS::onCommand(uint8_t cmdId, uint32_t param) {
(void)cmdId;
(void)param;
//TBD
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//