//***************************************************************************** // Modified for CMSIS by Quantum Leaps on Feb-17-2010 // www.state-machine.com //***************************************************************************** //***************************************************************************** // // display96x16x1.c - Driver for the 96x16 monochrome graphical OLED // displays used on the ek-lm3s811 board. // // Copyright (c) 2006-2010 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Texas Instruments (TI) is supplying this software for use solely and // exclusively on TI's microcontroller products. The software is owned by // TI and/or its suppliers, and is protected under applicable copyright // laws. You may not combine this software with "viral" open-source // software in order to form a larger program. // // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL // DAMAGES, FOR ANY REASON WHATSOEVER. // // This is part of revision 5570 of the EK-LM3S811 Firmware Package. // //***************************************************************************** //***************************************************************************** // //! \addtogroup display_api //! @{ // //***************************************************************************** #include #include "lm3s_cmsis.h" #include "display96x16x1.h" //***************************************************************************** // NOTE: // // This driver supports both the OSRAM/SSD0303 display used on the original // ek-lm3s811 boards (orange display) and also the RIT/SSD1300 display // used on later boards (blue display). It determines which display is in use // by looking at bit 12 of register DID1 which is set for all later kits but // not the original version. This bit is specific to eval kits. If you wish to // use this driver on your own production board, build with #define OSRAM_ONLY // or #define RIT_ONLY to select support for a single display and remove the // DID1 check. // //***************************************************************************** //***************************************************************************** // // The I2C slave address of the SSD controllers on the OLED displays. // //***************************************************************************** #define SSD_ADDR 0x3d //***************************************************************************** // // I2C Master commands. // //***************************************************************************** #define I2C_MASTER_CMD_SINGLE_SEND 0x00000007 #define I2C_MASTER_CMD_SINGLE_RECEIVE 0x00000007 #define I2C_MASTER_CMD_BURST_SEND_START 0x00000003 #define I2C_MASTER_CMD_BURST_SEND_CONT 0x00000001 #define I2C_MASTER_CMD_BURST_SEND_FINISH 0x00000005 #define I2C_MASTER_CMD_BURST_SEND_ERROR_STOP 0x00000004 #define I2C_MASTER_CMD_BURST_RECEIVE_START 0x0000000b #define I2C_MASTER_CMD_BURST_RECEIVE_CONT 0x00000009 #define I2C_MASTER_CMD_BURST_RECEIVE_FINISH 0x00000005 #define I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP 0x00000005 //***************************************************************************** // // A 5x7 font (in a 6x8 cell, where the sixth column is omitted from this // table) for displaying text on the OLED display. The data is organized as // bytes from the left column to the right column, with each byte containing // the top row in the LSB and the bottom row in the MSB. // //***************************************************************************** static uint8_t const g_pucFont[95][5] = { { 0x00, 0x00, 0x00, 0x00, 0x00 }, // " " { 0x00, 0x00, 0x4f, 0x00, 0x00 }, // ! { 0x00, 0x07, 0x00, 0x07, 0x00 }, // " { 0x14, 0x7f, 0x14, 0x7f, 0x14 }, // # { 0x24, 0x2a, 0x7f, 0x2a, 0x12 }, // $ { 0x23, 0x13, 0x08, 0x64, 0x62 }, // % { 0x36, 0x49, 0x55, 0x22, 0x50 }, // & { 0x00, 0x05, 0x03, 0x00, 0x00 }, // ' { 0x00, 0x1c, 0x22, 0x41, 0x00 }, // ( { 0x00, 0x41, 0x22, 0x1c, 0x00 }, // ) { 0x14, 0x08, 0x3e, 0x08, 0x14 }, // * { 0x08, 0x08, 0x3e, 0x08, 0x08 }, // + { 0x00, 0x50, 0x30, 0x00, 0x00 }, // , { 0x08, 0x08, 0x08, 0x08, 0x08 }, // - { 0x00, 0x60, 0x60, 0x00, 0x00 }, // . { 0x20, 0x10, 0x08, 0x04, 0x02 }, // / { 0x3e, 0x51, 0x49, 0x45, 0x3e }, // 0 { 0x00, 0x42, 0x7f, 0x40, 0x00 }, // 1 { 0x42, 0x61, 0x51, 0x49, 0x46 }, // 2 { 0x21, 0x41, 0x45, 0x4b, 0x31 }, // 3 { 0x18, 0x14, 0x12, 0x7f, 0x10 }, // 4 { 0x27, 0x45, 0x45, 0x45, 0x39 }, // 5 { 0x3c, 0x4a, 0x49, 0x49, 0x30 }, // 6 { 0x01, 0x71, 0x09, 0x05, 0x03 }, // 7 { 0x36, 0x49, 0x49, 0x49, 0x36 }, // 8 { 0x06, 0x49, 0x49, 0x29, 0x1e }, // 9 { 0x00, 0x36, 0x36, 0x00, 0x00 }, // : { 0x00, 0x56, 0x36, 0x00, 0x00 }, // ; { 0x08, 0x14, 0x22, 0x41, 0x00 }, // < { 0x14, 0x14, 0x14, 0x14, 0x14 }, // = { 0x00, 0x41, 0x22, 0x14, 0x08 }, // > { 0x02, 0x01, 0x51, 0x09, 0x06 }, // ? { 0x32, 0x49, 0x79, 0x41, 0x3e }, // @ { 0x7e, 0x11, 0x11, 0x11, 0x7e }, // A { 0x7f, 0x49, 0x49, 0x49, 0x36 }, // B { 0x3e, 0x41, 0x41, 0x41, 0x22 }, // C { 0x7f, 0x41, 0x41, 0x22, 0x1c }, // D { 0x7f, 0x49, 0x49, 0x49, 0x41 }, // E { 0x7f, 0x09, 0x09, 0x09, 0x01 }, // F { 0x3e, 0x41, 0x49, 0x49, 0x7a }, // G { 0x7f, 0x08, 0x08, 0x08, 0x7f }, // H { 0x00, 0x41, 0x7f, 0x41, 0x00 }, // I { 0x20, 0x40, 0x41, 0x3f, 0x01 }, // J { 0x7f, 0x08, 0x14, 0x22, 0x41 }, // K { 0x7f, 0x40, 0x40, 0x40, 0x40 }, // L { 0x7f, 0x02, 0x0c, 0x02, 0x7f }, // M { 0x7f, 0x04, 0x08, 0x10, 0x7f }, // N { 0x3e, 0x41, 0x41, 0x41, 0x3e }, // O { 0x7f, 0x09, 0x09, 0x09, 0x06 }, // P { 0x3e, 0x41, 0x51, 0x21, 0x5e }, // Q { 0x7f, 0x09, 0x19, 0x29, 0x46 }, // R { 0x46, 0x49, 0x49, 0x49, 0x31 }, // S { 0x01, 0x01, 0x7f, 0x01, 0x01 }, // T { 0x3f, 0x40, 0x40, 0x40, 0x3f }, // U { 0x1f, 0x20, 0x40, 0x20, 0x1f }, // V { 0x3f, 0x40, 0x38, 0x40, 0x3f }, // W { 0x63, 0x14, 0x08, 0x14, 0x63 }, // X { 0x07, 0x08, 0x70, 0x08, 0x07 }, // Y { 0x61, 0x51, 0x49, 0x45, 0x43 }, // Z { 0x00, 0x7f, 0x41, 0x41, 0x00 }, // [ { 0x02, 0x04, 0x08, 0x10, 0x20 }, // "\" { 0x00, 0x41, 0x41, 0x7f, 0x00 }, // ] { 0x04, 0x02, 0x01, 0x02, 0x04 }, // ^ { 0x40, 0x40, 0x40, 0x40, 0x40 }, // _ { 0x00, 0x01, 0x02, 0x04, 0x00 }, // ` { 0x20, 0x54, 0x54, 0x54, 0x78 }, // a { 0x7f, 0x48, 0x44, 0x44, 0x38 }, // b { 0x38, 0x44, 0x44, 0x44, 0x20 }, // c { 0x38, 0x44, 0x44, 0x48, 0x7f }, // d { 0x38, 0x54, 0x54, 0x54, 0x18 }, // e { 0x08, 0x7e, 0x09, 0x01, 0x02 }, // f { 0x0c, 0x52, 0x52, 0x52, 0x3e }, // g { 0x7f, 0x08, 0x04, 0x04, 0x78 }, // h { 0x00, 0x44, 0x7d, 0x40, 0x00 }, // i { 0x20, 0x40, 0x44, 0x3d, 0x00 }, // j { 0x7f, 0x10, 0x28, 0x44, 0x00 }, // k { 0x00, 0x41, 0x7f, 0x40, 0x00 }, // l { 0x7c, 0x04, 0x18, 0x04, 0x78 }, // m { 0x7c, 0x08, 0x04, 0x04, 0x78 }, // n { 0x38, 0x44, 0x44, 0x44, 0x38 }, // o { 0x7c, 0x14, 0x14, 0x14, 0x08 }, // p { 0x08, 0x14, 0x14, 0x18, 0x7c }, // q { 0x7c, 0x08, 0x04, 0x04, 0x08 }, // r { 0x48, 0x54, 0x54, 0x54, 0x20 }, // s { 0x04, 0x3f, 0x44, 0x40, 0x20 }, // t { 0x3c, 0x40, 0x40, 0x20, 0x7c }, // u { 0x1c, 0x20, 0x40, 0x20, 0x1c }, // v { 0x3c, 0x40, 0x30, 0x40, 0x3c }, // w { 0x44, 0x28, 0x10, 0x28, 0x44 }, // x { 0x0c, 0x50, 0x50, 0x50, 0x3c }, // y { 0x44, 0x64, 0x54, 0x4c, 0x44 }, // z { 0x00, 0x08, 0x36, 0x41, 0x00 }, // { { 0x00, 0x00, 0x7f, 0x00, 0x00 }, // | { 0x00, 0x41, 0x36, 0x08, 0x00 }, // } { 0x02, 0x01, 0x02, 0x04, 0x02 }, // ~ }; //***************************************************************************** // // The sequence of commands used to initialize the SSD0303 controller found on // the OSRAM displays used with earlier ek-lm3s811 boards. Each command is // described as follows: there is a byte specifying the number of bytes in the // I2C transfer, followed by that many bytes of command data. // //***************************************************************************** #ifndef RIT_ONLY static uint8_t const g_pucOSRAMInit[] = { // // Turn off the panel // 0x04, 0x80, 0xae, 0x80, 0xe3, // // Set lower column address // 0x04, 0x80, 0x04, 0x80, 0xe3, // // Set higher column address // 0x04, 0x80, 0x12, 0x80, 0xe3, // // Set contrast control register // 0x06, 0x80, 0x81, 0x80, 0x2b, 0x80, 0xe3, // // Set segment re-map // 0x04, 0x80, 0xa1, 0x80, 0xe3, // // Set display start line // 0x04, 0x80, 0x40, 0x80, 0xe3, // // Set display offset // 0x06, 0x80, 0xd3, 0x80, 0x00, 0x80, 0xe3, // // Set multiplex ratio // 0x06, 0x80, 0xa8, 0x80, 0x0f, 0x80, 0xe3, // // Set the display to normal mode // 0x04, 0x80, 0xa4, 0x80, 0xe3, // // Non-inverted display // 0x04, 0x80, 0xa6, 0x80, 0xe3, // // Set the page address // 0x04, 0x80, 0xb0, 0x80, 0xe3, // // Set COM output scan direction // 0x04, 0x80, 0xc8, 0x80, 0xe3, // // Set display clock divide ratio/oscillator frequency // 0x06, 0x80, 0xd5, 0x80, 0x72, 0x80, 0xe3, // // Enable mono mode // 0x06, 0x80, 0xd8, 0x80, 0x00, 0x80, 0xe3, // // Set pre-charge period // 0x06, 0x80, 0xd9, 0x80, 0x22, 0x80, 0xe3, // // Set COM pins hardware configuration // 0x06, 0x80, 0xda, 0x80, 0x12, 0x80, 0xe3, // // Set VCOM deslect level // 0x06, 0x80, 0xdb, 0x80, 0x0f, 0x80, 0xe3, // // Set DC-DC on // 0x06, 0x80, 0xad, 0x80, 0x8b, 0x80, 0xe3, // // Turn on the panel // 0x04, 0x80, 0xaf, 0x80, 0xe3, }; #endif //***************************************************************************** // // The sequence of commands used to initialize the SSD1300 controller as found // on the RIT displays used with later ek-lm3s811 boards. // //***************************************************************************** #ifndef OSRAM_ONLY static uint8_t const g_pucRITInit[] = { //New Display display // // Turn off the panel // 0x04, 0x80, 0xae, 0x80, 0xe3, // // Internal dc/dc on/off // 0x06, 0x80, 0xad, 0x80, 0x8a, 0x80, 0xe3, // // Multiplex ratio // 0x06, 0x80, 0xa8, 0x80, 0x1f, 0x80, 0xe3, // // COM out scan direction // 0x04, 0x80, 0xc8, 0x80, 0xe3, // // Segment map // 0x04, 0x80, 0xa0, 0x80, 0xe3, // // Set area color mode // 0x04, 0x80, 0xd8, 0x80, 0xe3, // // Low power save mode // 0x04, 0x80, 0x05, 0x80, 0xe3, // // Start line // 0x04, 0x80, 0x40, 0x80, 0xe3, // // Contrast setting // 0x06, 0x80, 0x81, 0x80, 0x5d, 0x80, 0xe3, // // Pre-charge/discharge // 0x06, 0x80, 0xd9, 0x80, 0x11, 0x80, 0xe3, // // Set display clock // 0x06, 0x80, 0xd5, 0x80, 0x01, 0x80, 0xe3, // // Display offset // 0x06, 0x80, 0xd3, 0x80, 0x00, 0x80, 0xe3, // // Display off // 0x04, 0x80, 0xaf, 0x80, 0xe3, }; #endif //***************************************************************************** // // Macro used to select the appropriate display initialization commands. // //***************************************************************************** #ifdef OSRAM_ONLY #define g_pucDisplayInit g_pucOSRAMInit #define SIZE_INIT_CMDS (sizeof(g_pucOSRAMInit)) #else #ifdef RIT_ONLY #define g_pucDisplayInit g_pucRITInit #define SIZE_INIT_CMDS (sizeof(g_pucRITInit)) #else #define g_pucDisplayInit (g_ucDisplayIsRIT ? g_pucRITInit : g_pucOSRAMInit) #define SIZE_INIT_CMDS (g_ucDisplayIsRIT ? sizeof(g_pucRITInit) : \ sizeof(g_pucOSRAMInit)) #endif #endif //***************************************************************************** // // The sequence of commands used to set the cursor to the first column of the // first and second rows of the display for each of the supported displays. // //***************************************************************************** #ifndef RIT_ONLY static uint8_t const g_pucOSRAMRow1[] = { 0xb0, 0x80, 0x04, 0x80, 0x12, 0x40 }; static uint8_t const g_pucOSRAMRow2[] = { 0xb1, 0x80, 0x04, 0x80, 0x12, 0x40 }; #endif #ifndef OSRAM_ONLY static uint8_t const g_pucRITRow1[] = { 0xb0, 0x80, 0x04, 0x80, 0x10, 0x40 }; static uint8_t const g_pucRITRow2[] = { 0xb1, 0x80, 0x04, 0x80, 0x10, 0x40 }; #endif //***************************************************************************** // // The number of bytes in the cursor row command. // //***************************************************************************** #define SIZE_CURSOR_ROW_COMMAND 6 //***************************************************************************** // // Macros used to select the appropriate cursor row setting commands. // //***************************************************************************** #ifdef OSRAM_ONLY #define g_pucRow1 g_pucOSRAMRow1 #define g_pucRow2 g_pucOSRAMRow2 #else #ifdef RIT_ONLY #define g_pucRow1 g_pucRITRow1 #define g_pucRow2 g_pucRITRow2 #else #define g_pucRow1 (g_ucDisplayIsRIT ? g_pucRITRow1 : g_pucOSRAMRow1) #define g_pucRow2 (g_ucDisplayIsRIT ? g_pucRITRow2 : g_pucOSRAMRow2) #endif #endif //***************************************************************************** // // The number of non-displayed columns to the left of the display area. // //***************************************************************************** #ifdef OSRAM_ONLY // // If built for the OSRAM display only, there are 4 non-displayed columns. // #define g_ucColumnAdjust 36 #else #ifdef RIT_ONLY // // If built for the OSRAM display only, there are 36 non-displayed columns. // #define g_ucColumnAdjust 4 #else // // If built to sense the display type and handle whichever is found, we allocate // variables to store the number of non-displayed columns and a flag indicating // which display is in use. // static uint8_t g_ucDisplayIsRIT; static uint8_t g_ucColumnAdjust; #endif #endif //***************************************************************************** // // The inter-byte delay required by the display OLED controller. // //***************************************************************************** static unsigned long g_ulDelay; //***************************************************************************** #if defined ( __CC_ARM ) static void __asm SysCtlDelay(unsigned long ulCount) { SysCtlDelay_loop SUBS r0,#1 BNE SysCtlDelay_loop BX lr } #elif defined ( __ICCARM__ ) static void SysCtlDelay(uint32_t ulCount) { __asm("SysCtlDelay_loop: \n\t" " subs r0,#1 \n\t" " bne.n SysCtlDelay_loop \n\t" " bx lr"); } #elif defined ( __GNUC__ ) static void SysCtlDelay(uint32_t ulCount) { __asm("SysCtlDelay_loop: \n\t" " subs r0, #1 \n\t" " bne.n SysCtlDelay_loop \n\t" " bx lr"); } #endif //***************************************************************************** // //! \internal //! //! Start a transfer to the SSD0303 or SSD1300 controller. //! //! \param ucChar is the first byte to be written to the controller. //! //! This function will start a transfer to the display controller via the I2C //! bus. //! //! The data is written in a polled fashion; this function will not return //! until the byte has been written to the controller. //! //! \return None. // //***************************************************************************** static void Display96x16x1WriteFirst(uint8_t ucChar) { // // Set the slave address. // I2C0_MASTER->MSA = (SSD_ADDR << 1); // // Write the first byte to the controller. // I2C0_MASTER->MDR = ucChar; // // Start the transfer. // I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_START; } //***************************************************************************** // //! \internal //! //! Write a byte to the SSD0303 or SSD1300 controller. //! //! \param ucChar is the byte to be transmitted to the controller. //! //! This function continues a transfer to the display controller by writing //! another byte over the I2C bus. This must only be called after calling //! Display96x16x1WriteFirst(), but before calling Display96x16x1WriteFinal(). //! //! The data is written in a polled faashion; this function will not return //! until the byte has been written to the controller. //! //! \return None. // //***************************************************************************** static void Display96x16x1WriteByte(uint8_t ucChar) { // // Wait until the current byte has been transferred. // while(I2C0_MASTER->MRIS == 0) { } // // Provide the required inter-byte delay. // SysCtlDelay(g_ulDelay); // // Write the next byte to the controller. // I2C0_MASTER->MDR = ucChar; // // Continue the transfer. // I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_CONT; } //***************************************************************************** // //! \internal //! //! Write a sequence of bytes to the SSD0303 or SD1300 controller. //! //! This function continues a transfer to the display controller by writing a //! sequence of bytes over the I2C bus. This must only be called after calling //! Display96x16x1WriteFirst(), but before calling Display96x16x1WriteFinal(). //! //! The data is written in a polled fashion; this function will not return //! until the entire byte sequence has been written to the controller. //! //! \return None. // //***************************************************************************** static void Display96x16x1WriteArray(uint8_t const *pucBuffer, uint32_t ulCount) { // // Loop while there are more bytes left to be transferred. // while(ulCount != 0) { // // Wait until the current byte has been transferred. // while(I2C0_MASTER->MRIS == 0) { } // // Provide the required inter-byte delay. // SysCtlDelay(g_ulDelay); // // Write the next byte to the controller. // I2C0_MASTER->MDR = *pucBuffer++; ulCount--; // // Continue the transfer. // I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_CONT; } } //***************************************************************************** // //! \internal //! //! Finish a transfer to the SSD0303 or SD1300 controller. //! //! \param ucChar is the final byte to be written to the controller. //! //! This function will finish a transfer to the display controller via the I2C //! bus. This must only be called after calling Display96x16x1WriteFirst(). //! //! The data is written in a polled fashion; this function will not return //! until the byte has been written to the controller. //! //! \return None. // //***************************************************************************** static void Display96x16x1WriteFinal(uint8_t ucChar) { // // Wait until the current byte has been transferred. // while(I2C0_MASTER->MRIS == 0) { } // // Provide the required inter-byte delay. // SysCtlDelay(g_ulDelay); // // Write the final byte to the controller. // I2C0_MASTER->MDR = ucChar; // // Finish the transfer. // I2C0_MASTER->MCS = I2C_MASTER_CMD_BURST_SEND_FINISH; // // Wait until the final byte has been transferred. // while(I2C0_MASTER->MRIS == 0) { } // // Provide the required inter-byte delay. // SysCtlDelay(g_ulDelay); } //***************************************************************************** // //! Clears the OLED display. //! //! This function will clear the display. All pixels in the display will be //! turned off. //! //! \return None. // //***************************************************************************** void Display96x16x1Clear(void) { uint32_t ulIdx; // // Move the display cursor to the first column of the first row. // Display96x16x1WriteFirst(0x80); Display96x16x1WriteArray(g_pucRow1, SIZE_CURSOR_ROW_COMMAND); // // Fill this row with zeros. // for(ulIdx = 0; ulIdx < 95; ulIdx++) { Display96x16x1WriteByte(0x00); } Display96x16x1WriteFinal(0x00); // // Move the display cursor to the first column of the second row. // Display96x16x1WriteFirst(0x80); Display96x16x1WriteArray(g_pucRow2, SIZE_CURSOR_ROW_COMMAND); // // Fill this row with zeros. // for(ulIdx = 0; ulIdx < 95; ulIdx++) { Display96x16x1WriteByte(0x00); } Display96x16x1WriteFinal(0x00); } //***************************************************************************** // //! Displays a string on the OLED display. //! //! \param pcStr is a pointer to the string to display. //! \param ulX is the horizontal position to display the string, specified in //! columns from the left edge of the display. //! \param ulY is the vertical position to display the string, specified in //! eight scan line blocks from the top of the display (that is, only 0 and 1 //! are valid). //! //! This function will draw a string on the display. Only the ASCII characters //! between 32 (space) and 126 (tilde) are supported; other characters will //! result in random data being draw on the display (based on whatever appears //! before/after the font in memory). The font is mono-spaced, so characters //! such as ``i'' and ``l'' have more white space around them than characters //! such as ``m'' or ``w''. //! //! If the drawing of the string reaches the right edge of the display, no more //! characters will be drawn. Therefore, special care is not required to avoid //! supplying a string that is ``too long'' to display. //! //! \return None. // //***************************************************************************** void Display96x16x1StringDraw(const char *pcStr, uint32_t ulX, uint32_t ulY) { // // Move the display cursor to the requested position on the display. // Display96x16x1WriteFirst(0x80); Display96x16x1WriteByte((ulY == 0) ? 0xb0 : 0xb1); Display96x16x1WriteByte(0x80); Display96x16x1WriteByte((ulX + g_ucColumnAdjust) & 0x0f); Display96x16x1WriteByte(0x80); Display96x16x1WriteByte(0x10 | (((ulX + g_ucColumnAdjust) >> 4) & 0x0f)); Display96x16x1WriteByte(0x40); // // Loop while there are more characters in the string. // while(*pcStr != 0) { // // See if there is enough space on the display for this entire // character. // if(ulX <= 90) { // // Write the contents of this character to the display. // Display96x16x1WriteArray(g_pucFont[*pcStr - ' '], 5); // // See if this is the last character to display (either because the // right edge has been reached or because there are no more // characters). // if((ulX == 90) || (pcStr[1] == 0)) { // // Write the final column of the display. // Display96x16x1WriteFinal(0x00); // // The string has been displayed. // return; } // // Write the inter-character padding column. // Display96x16x1WriteByte(0x00); } else { // // Write the portion of the character that will fit onto the // display. // Display96x16x1WriteArray(g_pucFont[*pcStr - ' '], 95 - ulX); Display96x16x1WriteFinal(g_pucFont[*pcStr - ' '][95 - ulX]); // // The string has been displayed. // return; } // // Advance to the next character. // pcStr++; // // Increment the X coordinate by the six columns that were just // written. // ulX += 6; } } //***************************************************************************** // //! Displays an image on the OLED display. //! //! \param pucImage is a pointer to the image data. //! \param ulX is the horizontal position to display this image, specified in //! columns from the left edge of the display. //! \param ulY is the vertical position to display this image, specified in //! eight scan line blocks from the top of the display (that is, only 0 and 1 //! are valid). //! \param ulWidth is the width of the image, specified in columns. //! \param ulHeight is the height of the image, specified in eight row blocks //! (that is, only 1 and 2 are valid). //! //! This function will display a bitmap graphic on the display. The image to //! be displayed must be a multiple of eight scan lines high (that is, one row) //! and will be drawn at a vertical position that is a multiple of eight scan //! lines (that is, scan line zero or scan line eight, corresponding to row //! zero or row one). //! //! The image data is organized with the first row of image data appearing left //! to right, followed immediately by the second row of image data. Each byte //! contains the data for the eight scan lines of the column, with the top scan //! line being in the least significant bit of the byte and the bottom scan //! line being in the most significant bit of the byte. //! //! For example, an image four columns wide and sixteen scan lines tall would //! be arranged as follows (showing how the eight bytes of the image would //! appear on the display): //! //! \verbatim //! +-------+ +-------+ +-------+ +-------+ //! | | 0 | | | 0 | | | 0 | | | 0 | //! | B | 1 | | B | 1 | | B | 1 | | B | 1 | //! | y | 2 | | y | 2 | | y | 2 | | y | 2 | //! | t | 3 | | t | 3 | | t | 3 | | t | 3 | //! | e | 4 | | e | 4 | | e | 4 | | e | 4 | //! | | 5 | | | 5 | | | 5 | | | 5 | //! | 0 | 6 | | 1 | 6 | | 2 | 6 | | 3 | 6 | //! | | 7 | | | 7 | | | 7 | | | 7 | //! +-------+ +-------+ +-------+ +-------+ //! //! +-------+ +-------+ +-------+ +-------+ //! | | 0 | | | 0 | | | 0 | | | 0 | //! | B | 1 | | B | 1 | | B | 1 | | B | 1 | //! | y | 2 | | y | 2 | | y | 2 | | y | 2 | //! | t | 3 | | t | 3 | | t | 3 | | t | 3 | //! | e | 4 | | e | 4 | | e | 4 | | e | 4 | //! | | 5 | | | 5 | | | 5 | | | 5 | //! | 4 | 6 | | 5 | 6 | | 6 | 6 | | 7 | 6 | //! | | 7 | | | 7 | | | 7 | | | 7 | //! +-------+ +-------+ +-------+ +-------+ //! \endverbatim //! //! \return None. // //***************************************************************************** void Display96x16x1ImageDraw(const uint8_t *pucImage, uint32_t ulX, uint32_t ulY, uint32_t ulWidth, uint32_t ulHeight) { // // The first few columns of the LCD buffer are not displayed, so increment // the X coorddinate by this amount to account for the non-displayed frame // buffer memory. // ulX += g_ucColumnAdjust; // // Loop while there are more rows to display. // while(ulHeight--) { // // Write the starting address within this row. // Display96x16x1WriteFirst(0x80); Display96x16x1WriteByte((ulY == 0) ? 0xb0 : 0xb1); Display96x16x1WriteByte(0x80); Display96x16x1WriteByte(ulX & 0x0f); Display96x16x1WriteByte(0x80); Display96x16x1WriteByte(0x10 | ((ulX >> 4) & 0x0f)); Display96x16x1WriteByte(0x40); // // Write this row of image data. // Display96x16x1WriteArray(pucImage, ulWidth - 1); Display96x16x1WriteFinal(pucImage[ulWidth - 1]); // // Advance to the next row of the image. // pucImage += ulWidth; ulY++; } } //***************************************************************************** // //! Initialize the OLED display. //! //! \param bFast is a boolean that is \e true if the I2C interface should be //! run at 400 kbps and \e false if it should be run at 100 kbps. //! //! This function initializes the I2C interface to the OLED display and //! configures the SSD0303 or SSD1300 controller on the panel. //! //! \return None. // //***************************************************************************** void Display96x16x1Init(uint8_t bFast) { uint32_t ulTmp; // // Enable the I2C and GPIO port B blocks as they are needed by this driver. // SYSCTL->RCGC1 |= (1 << 12); /* enable clock to I2C0 */ SYSCTL->RCGC2 |= (1 << 1); /* enable clock to GPIOB */ #if (!(defined OSRAM_ONLY) && !(defined RIT_ONLY)) // // Read SysCtl DID1 register to determine whether this is an older board // with the OSRAM display or a newer one with the RIT model. // g_ucDisplayIsRIT = (SYSCTL->DID1 & (1 << 12)) ? 1 : 0; // // Set the correct number of non-displayed columns given the display type // we are using. // g_ucColumnAdjust = g_ucDisplayIsRIT ? 4 : 36; #endif // // If using the RIT display, we need to enable power by pulling PD7 high. // #ifndef OSRAM_ONLY #ifndef RIT_ONLY if(g_ucDisplayIsRIT) { #endif SYSCTL->RCGC2 |= (1 << 3); /* enable clock to GPIOD */ SysCtlDelay(1); /* wait a tiny bit after enabling clocks */ GPIOD->DIR |= (1 << 7); /* set GPIOD-pin7 direction to output */ GPIOD->DATA_Bits[1 << 7] = (1 << 7); /* drive GPIOD-pin7 high */ #ifndef RIT_ONLY } #endif #endif // // Configure the I2C SCL and SDA pins for I2C operation. // ulTmp = (1 << 2) | (1 << 3); GPIOB->DIR &= ~ulTmp; GPIOB->AFSEL |= ulTmp; GPIOB->DR2R |= ulTmp; /* set 2mA drive, DR4R and DR8R are cleared */ GPIOB->SLR &= ~ulTmp; GPIOB->ODR |= ulTmp; GPIOB->PUR |= ulTmp; /* set weak pull-up; PDR is cleared */ GPIOB->DEN |= ulTmp; GPIOB->AMSEL &= ~ulTmp; // // Initialize the I2C master. // I2C0_MASTER->MCR |= (1 << 4); /* I2C master enable */ if (bFast) { ulTmp = 400000; } else { ulTmp = 100000; } I2C0_MASTER->MTPR = ((SystemFrequency + (2 * 10 * ulTmp) - 1) / (2 * 10 * ulTmp)) - 1; // // Compute the inter-byte delay for the display controller. This delay is // dependent upon the I2C bus clock rate; the slower the clock the longer // the delay required. // // The derivation of this formula is based on a measured delay of // SysCtlDelay(1700) for a 100 kHz I2C bus with the CPU running at 50 MHz // (referred to as C). To scale this to the delay for a different CPU // speed (since this is just a CPU-based delay loop) is: // // f(CPU) // C * ---------- // 50,000,000 // // To then scale this to the actual I2C rate (since it won't always be // precisely 100 kHz): // // f(CPU) 100,000 // C * ---------- * ------- // 50,000,000 f(I2C) // // This equation will give the inter-byte delay required for any // configuration of the I2C master. But, as arranged it is impossible to // directly compute in 32-bit arithmetic (without loosing a lot of // accuracy). So, the equation is simplified. // // Since f(I2C) is generated by dividing down from f(CPU), replace it with // the equivalent (where TPR is the value programmed into the Master Timer // Period Register of the I2C master, with the 1 added back): // // 100,000 // f(CPU) ------- // C * ---------- * f(CPU) // 50,000,000 ------------ // 2 * 10 * TPR // // Inverting the dividend in the last term: // // f(CPU) 100,000 * 2 * 10 * TPR // C * ---------- * ---------------------- // 50,000,000 f(CPU) // // The f(CPU) now cancels out. // // 100,000 * 2 * 10 * TPR // C * ---------------------- // 50,000,000 // // Since there are no clock frequencies left in the equation, this equation // also works for 400 kHz bus operation as well, since the 100,000 in the // numerator becomes 400,000 but C is 1/4, which cancel out each other. // Reducing the constants gives: // // TPR TPR TPR // C * --- = 1700 * --- = 340 * --- = 68 * TPR // 25 25 5 // // Note that the constant C is actually a bit larger than it needs to be in // order to provide some safety margin. // g_ulDelay = 68 * (I2C0_MASTER->MTPR + 1); // // Initialize the display controller. Loop through the initialization // sequence doing a single I2C transfer for each command. // for(ulTmp = 0; ulTmp < SIZE_INIT_CMDS; ulTmp += g_pucDisplayInit[ulTmp] + 1) { // // Send this command. // Display96x16x1WriteFirst(g_pucDisplayInit[ulTmp + 1]); Display96x16x1WriteArray(g_pucDisplayInit + ulTmp + 2, g_pucDisplayInit[ulTmp] - 2); Display96x16x1WriteFinal(g_pucDisplayInit[ulTmp + g_pucDisplayInit[ulTmp]]); } // // Clear the frame buffer. // Display96x16x1Clear(); } //***************************************************************************** // //! Turns on the OLED display. //! //! This function will turn on the OLED display, causing it to display the //! contents of its internal frame buffer. //! //! \return None. // //***************************************************************************** void Display96x16x1DisplayOn(void) { uint32_t ulIdx; // // Re-initialize the display controller. Loop through the initialization // sequence doing a single I2C transfer for each command. // for(ulIdx = 0; ulIdx < SIZE_INIT_CMDS; ulIdx += g_pucDisplayInit[ulIdx] + 1) { // // Send this command. // Display96x16x1WriteFirst(g_pucDisplayInit[ulIdx + 1]); Display96x16x1WriteArray(g_pucDisplayInit + ulIdx + 2, g_pucDisplayInit[ulIdx] - 2); Display96x16x1WriteFinal(g_pucDisplayInit[ulIdx + g_pucDisplayInit[ulIdx]]); } } //***************************************************************************** // //! Turns off the OLED display. //! //! This function will turn off the OLED display. This will stop the scanning //! of the panel and turn off the on-chip DC-DC converter, preventing damage to //! the panel due to burn-in (it has similar characters to a CRT in this //! respect). //! //! \return None. // //***************************************************************************** void Display96x16x1DisplayOff(void) { // // Turn off the DC-DC converter and the display. // Display96x16x1WriteFirst(0x80); Display96x16x1WriteByte(0xae); Display96x16x1WriteByte(0x80); Display96x16x1WriteByte(0xad); Display96x16x1WriteByte(0x80); Display96x16x1WriteFinal(0x8a); } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************