///***************************************************************************
// Product: DPP example, LAUCHXL2-TMS570LS12 board, preemptive QK kernel
// Last Updated for Version: 5.9.0
// Date of the Last Update: 2017-05-09
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "sys_common.h"
#include "sys_core.h"
#include "sys_vim.h"
#include "system.h"
#include "gio.h"
#include "rti.h"
#include "het.h"
#include "sci.h"
// add other drivers if necessary...
// namespace DPP *************************************************************
namespace DPP {
Q_DEFINE_THIS_FILE
// Local-scope objects -------------------------------------------------------
#define LED2_PIN 1
#define LED2_PORT gioPORTB
#define LED3_PIN 2
#define LED3_PORT gioPORTB
// NOTE: Switch-A is multiplexed on the same port/pin as LED3,
// so you can use one or the other but not both simultaneously.
//
#define SWA_PIN 2
#define SWA_PORT gioPORTB
#define SWB_PIN 15
#define SWB_PORT hetREG1
#define VIM_RAM ((t_isrFuncPTR *)0xFFF82000U)
static uint32_t l_rnd; // random seed
static QP::QMutex l_rndMutex; // mutex to protect the random seed
#ifdef Q_SPY
// QS source IDs
static uint8_t const l_rtiCompare0 = (uint8_t)0;
static uint8_t const l_ssiTest = (uint8_t)0;
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
COMMAND_STAT
};
#endif
} // namespace DPP
// ISRs used in this project =================================================
extern "C" {
//............................................................................
// CAUTION: ISRs MUST be both __stackless and __arm!
QK_IRQ_BEGIN(rtiCompare0)
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
rtiREG1->INTFLAG = 1U; // clear the interrutp source
QP::QF::TICK_X(0U, &DPP::l_rtiCompare0); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = ~SWB_PORT->DIN; // read SWB
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & (1U << SWB_PIN)) != 0U) { // debounced SWB state changed?
if ((buttons.depressed & (1U << SWB_PIN)) != 0U) { // SWB depressed?
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &DPP::l_rtiCompare0);
}
else { // the button is released
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &DPP::l_rtiCompare0);
}
}
QK_IRQ_END()
//............................................................................
QK_IRQ_BEGIN(ssiTest) // System Software Interrupt for testing
systemREG1->SSIF = 0x01; // clear the SSI0 source
// for testing...
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), &DPP::l_ssiTest);
QK_IRQ_END()
//............................................................................
#ifdef Q_SPY
//
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QP-unaware" meaning that it does not interact with
// the QP and is not disabled. Such ISRs don't need to be defined with
// QK_IRQ_BEGIN()/QK_IRQ_END().
//
#if defined __IAR_SYSTEMS_ICC__
FIQ
#elif defined __TI_ARM__
#pragma CODE_STATE(32)
#pragma INTERRUPT(FIQ)
#else
#error Unsupported compiler
#endif
void sciHighLevel(void) {
uint32_t vec = scilinREG->INTVECT0;
if (vec == 11U) { // SCI receive interrupt
uint32_t b = scilinREG->RD;
QP::QS::rxPut(b);
}
}
#endif // Q_SPY
} // extern "C"
namespace DPP {
// BSP functions =============================================================
void BSP::init(void) {
// configure the LEDs
gioInit();
LED2_PORT->DIR |= (1U << LED2_PIN); // set as output
LED3_PORT->DIR |= (1U << LED3_PIN); // set as output
// configure the Buttons
SWB_PORT->DIR &= (1U << SWB_PIN); // set as input
// initialize the random seed
BSP::randomSeed(1234U);
if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_rtiCompare0);
QS_OBJ_DICTIONARY(&l_ssiTest);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'e') {
LED2_PORT->DSET = (1U << LED2_PIN);
}
else {
LED2_PORT->DCLR = (1U << LED2_PIN);
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused != 0U) {
//LED2_PORT->DSET = (1U << LED2_PIN);
}
else {
//LED2_PORT->DCLR = (1U << LED2_PIN);
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// Some flating point code is to exercise the VFP...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
l_rndMutex.lock(); // lock the random-seed mutex
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
l_rndMutex.unlock(); // unlock the random-seed mutex
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
l_rndMutex.init(N_PHILO); // ceiling <== maximum Philo priority
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
rtiInit(); // configure RTI with UC counter of 7
rtiSetPeriod(rtiCOUNTER_BLOCK0,
(uint32)((RTI_FREQ*1E6/(7+1))/DPP::BSP::TICKS_PER_SEC));
rtiEnableNotification(rtiNOTIFICATION_COMPARE0);
rtiStartCounter(rtiCOUNTER_BLOCK0);
VIM_RAM[2 + 1] = (t_isrFuncPTR)&rtiCompare0; // install the IRQ
vimREG->FIRQPR0 &= ~(1U << 2); // designate interrupt as IRQ, NOTE00
vimREG->REQMASKSET0 = (1U << 2); // enable interrupt
VIM_RAM[21 + 1] = (t_isrFuncPTR)&ssiTest ; // install the IRQ
vimREG->FIRQPR0 &= ~(1U << 21); // designate interrupt as IRQ, NOTE00
vimREG->REQMASKSET0 = (1U << 21); // enable interrupt
QF_INT_ENABLE_ALL(); // enable all interrupts (IRQ and FIQ)
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QK::onIdle(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
LED3_PORT->DSET = (1U << LED3_PIN);
LED3_PORT->DCLR = (1U << LED3_PIN);
QF_INT_ENABLE();
#ifdef Q_SPY
QS::rxParse(); // parse all the received bytes
//if (sciIsTxReady(scilinREG)) {
if ((scilinREG->FLR & (uint32)SCI_TX_INT) != 0U) { // is TX empty?
uint16_t b;
QF_INT_DISABLE();
b = QS::getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { // not End-Of-Data?
//sciSendByte(scilinREG, (b & 0xFFU));
scilinREG->TD = (b & 0xFFU); // put into the TD register
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-R MCU.
//
_gotoCPUIdle_(); // wait for interrupt
#endif
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast(10000U));
#ifndef NDEBUG
// light up both LEDs
LED2_PORT->DSET = (1U << LED2_PIN);
LED3_PORT->DSET = (1U << LED3_PIN);
// for debugging, hang on in an endless loop until SWB is pressed...
while ((SWB_PORT->DIN & (1U << SWB_PIN)) != 0) {
}
#endif
systemREG1->SYSECR = 0; // perform system reset
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// the SCI (UART) is configured in HALCoGen for 8-n-1 and 115200 baud
sciInit();
VIM_RAM[13 + 1] = (t_isrFuncPTR)&sciHighLevel; // install the ISR
vimREG->FIRQPR0 |= (1U << 13); // designate interrupt as FIQ
vimREG->REQMASKSET0 = (1U << 13); // enable interrupt
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(DPP::PHILO_STAT);
QS_FILTER_ON(DPP::COMMAND_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
return rtiREG1->CNT[0].FRCx; // free running RTI counter0
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
//while (!sciIsTxReady(scilinREG)) {
while ((scilinREG->FLR & (uint32)SCI_TX_INT) == 0U) {
}
//sciSendByte(scilinREG, (b & 0xFFU));
scilinREG->TD = (b & 0xFFU);
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
systemREG1->SYSECR = 0; // perform system reset
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
// application-specific record
QS_BEGIN(DPP::COMMAND_STAT, static_cast(0))
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_END()
if ((cmdId == 10U) || (cmdId == 11U)) {
// report error
QS_BEGIN(QS_RX_STATUS, static_cast(0))
QS_U8_(static_cast(0x80) | cmdId); // error
QS_END()
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE00:
// The FIQ-type interrupts are never disabled in this QP port, therefore
// they can always preempt any code, including the IRQ-handlers (ISRs).
// Therefore, FIQ-type interrupts are "kernel-unaware" and must NEVER call
// any QP services, such as posting events.
//
// NOTE01:
// One of the LEDs is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//