//****************************************************************************
// Product: Orthogonal Component state pattern example
// Last Updated for Version: 5.4.2
// Date of the Last Update: 2015-06-06
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Contact information:
// Web : https://state-machine.com
// Email: info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "bsp.h"
#include "alarm.h"
#include "clock.h"
#include
Q_DEFINE_THIS_FILE
//............................................................................
class AlarmClock : public QActive { // the AlarmClock container active object
private:
Alarm m_alarmComp; // Alarm orthogonal component
QTimeEvt m_timeEvt; // private time event generator
uint32_t m_current_time; // the current time in seconds
public:
AlarmClock() // default ctor
: QActive((QStateHandler)&AlarmClock::initial),
m_timeEvt(this, TIME_SIG, 0U) {}
private:
// hierarchical state machine ...
static QState initial (AlarmClock *me, QEvt const *e);
static QState timekeeping(AlarmClock *me, QEvt const *e);
static QState mode12hr (AlarmClock *me, QEvt const *e);
static QState mode24hr (AlarmClock *me, QEvt const *e);
static QState final (AlarmClock *me, QEvt const *e);
};
// HSM definition ------------------------------------------------------------
QState AlarmClock::initial(AlarmClock *me, QEvt const *) {
me->m_current_time = 0;
// take the initial transition in the alarm component...
me->m_alarmComp.init();
return Q_TRAN(&AlarmClock::timekeeping);
}
//............................................................................
QState AlarmClock::final(AlarmClock *me, QEvt const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf("-> final\nBye!Bye!\n");
QF::stop(); // stop QF and cleanup
return Q_HANDLED();
}
}
return Q_SUPER(&QHsm::top);
}
//............................................................................
QState AlarmClock::timekeeping(AlarmClock *me, QEvt const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
// periodic timeout in a second and every second
me->m_timeEvt.armX(BSP_TICKS_PER_SEC, BSP_TICKS_PER_SEC);
return Q_HANDLED();
}
case Q_EXIT_SIG: {
me->m_timeEvt.disarm();
return Q_HANDLED();
}
case Q_INIT_SIG: {
return Q_TRAN(&AlarmClock::mode24hr);
}
case CLOCK_12H_SIG: {
return Q_TRAN(&AlarmClock::mode12hr);
}
case CLOCK_24H_SIG: {
return Q_TRAN(&AlarmClock::mode24hr);
}
case ALARM_SIG: {
printf("Wake up!!!\n");
return Q_HANDLED();
}
case ALARM_SET_SIG:
case ALARM_ON_SIG:
case ALARM_OFF_SIG: {
me->m_alarmComp.dispatch(e); // synchronously dispatch to comp.
return Q_HANDLED();
}
case TERMINATE_SIG: {
return Q_TRAN(&AlarmClock::final);
}
}
return Q_SUPER(&QHsm::top);
}
//............................................................................
QState AlarmClock::mode24hr(AlarmClock *me, QEvt const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf("*** 24-hour mode\n");
return Q_HANDLED();
}
case TIME_SIG: {
if (++me->m_current_time == 24U*60U) { // roll over in 24-hr mode?
me->m_current_time = 0U;
}
printf("%02d:%02d\n",
me->m_current_time / 60U, me->m_current_time % 60U);
TimeEvt pe; // temporary synchronous event for the component
pe.sig = TIME_SIG;
pe.current_time = me->m_current_time;
me->m_alarmComp.dispatch(&pe); // synchronously dispatch to comp.
return Q_HANDLED();
}
}
return Q_SUPER(&AlarmClock::timekeeping);
}
//............................................................................
QState AlarmClock::mode12hr(AlarmClock *me, QEvt const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf("*** 12-hour mode\n");
return Q_HANDLED();
}
case TIME_SIG: {
if (++me->m_current_time == 12U*60U) { // roll over in 12-hr mode?
me->m_current_time = 0U;
}
uint32_t h = me->m_current_time/60U;
printf("%02d:%02d %s\n", (h % 12U) ? (h % 12U) : 12U,
me->m_current_time % 60U, (h / 12U) ? "PM" : "AM");
TimeEvt pe; // temporary synchronous event for the component
pe.sig = TIME_SIG;
pe.current_time = me->m_current_time;
me->m_alarmComp.dispatch(&pe); // synchronously dispatch to comp.
return Q_HANDLED();
}
}
return Q_SUPER(&AlarmClock::timekeeping);
}
// test harness ==============================================================
// Local-scope objects -------------------------------------------------------
static AlarmClock l_alarmClock; // the AlarmClock active object
static QEvt const *l_alarmClockQSto[10]; // queue storage for AlarmClock
static TimeEvt l_smlPoolSto[10]; // small event pool
// Global-scope objects (opaque pointer to the AlarmClock container) ---------
QActive * const APP_alarmClock= &l_alarmClock; // AlarmClock active object
//............................................................................
int main(int argc, char *argv[]) {
printf("Reminder state pattern\nQEP version: %s\nQF version: %s\n"
"Press 'o' to turn the Alarm ON\n"
"Press 'f' to turn the Alarm OFF\n"
"Press '0'..'9' to set the Alarm time\n"
"Press 'a' to set the Clock in 12-hour mode\n"
"Press 'b' to set the Clock in 24-hour mode\n"
"Press ESC to quit...\n",
QEP::getVersion(), QF::getVersion());
BSP_init(argc, argv); // initialize the BSP
QF::init(); // initialize the framework and the underlying RT kernel
// publish-subscribe not used, no call to QF::psInit()
// initialize event pools...
QF::poolInit(l_smlPoolSto, sizeof(l_smlPoolSto), sizeof(l_smlPoolSto[0]));
// start the active objects...
l_alarmClock.start(1, l_alarmClockQSto, Q_DIM(l_alarmClockQSto),
(void *)0, 0, (QEvt *)0);
return QF::run(); // run the QF application
}
//............................................................................
void BSP_onKeyboardInput(uint8_t key) {
switch (key) {
case 'o': { // 'o': Alarm on event?
l_alarmClock.POST(Q_NEW(QEvt, ALARM_ON_SIG), (void *)0);
break;
}
case 'f': { // 'f': Alarm off event?
l_alarmClock.POST(Q_NEW(QEvt, ALARM_OFF_SIG), (void *)0);
break;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
SetEvt *e = Q_NEW(SetEvt, ALARM_SET_SIG);
e->digit = (uint8_t)(key - '0');
l_alarmClock.POST(e, (void *)0);
break;
}
case '0': {
SetEvt *e = Q_NEW(SetEvt, ALARM_SET_SIG);
e->digit = 0;
l_alarmClock.POST(e, (void *)0);
break;
}
case 'a': { // 'a': Clock 12H event?
l_alarmClock.POST(Q_NEW(QEvt, CLOCK_12H_SIG), (void *)0);
break;
}
case 'b': { // 'b': Clock 24H event?
l_alarmClock.POST(Q_NEW(QEvt, CLOCK_24H_SIG), (void *)0);
break;
}
case '\33': { // ESC pressed?
l_alarmClock.POST(Q_NEW(QEvt, TERMINATE_SIG), (void *)0);
break;
}
}
}