//****************************************************************************
// Product: "Blinky" on LAUCHXL2-TMS570LS12 board, cooperative QV kernel
// Last Updated for Version: 5.7.0
// Date of the Last Update: 2016-08-31
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "blinky.h"
#include "bsp.h"
#include "sys_common.h"
#include "sys_core.h"
#include "sys_vim.h"
#include "system.h"
#include "gio.h"
#include "rti.h"
#include "het.h"
// add other drivers if necessary...
//Q_DEFINE_THIS_FILE
#ifdef Q_SPY
#error Simple Blinky Application does not provide Spy build configuration
#endif
// Local-scope objects -------------------------------------------------------
#define LED2_PIN 1
#define LED2_PORT gioPORTB
#define LED3_PIN 2
#define LED3_PORT gioPORTB
// NOTE: Switch-A is multiplexed on the same port/pin as LED3,
// so you can use one or the other but not both simultaneously.
//
#define SWA_PIN 2
#define SWA_PORT gioPORTB
#define SWB_PIN 15
#define SWB_PORT hetREG1
#define VIM_RAM ((t_isrFuncPTR *)0xFFF82000U)
// ISRs used in this project =================================================
extern "C" {
//............................................................................
// NOTE:
// The QV kernel can use the standard interrupt implementation generated
// by the HALCoGen. Here the RTI COMPARE0 is handled in a "notification"
// function called from rtiCompare0Interrupt() in the rti.c module.
//
void rtiNotification(uint32 notification) {
if (notification == rtiNOTIFICATION_COMPARE0) {
QP::QF::TICK_X(0U, (void *)0); // process time events for rate 0
}
}
} // extern "C"
// BSP functions =============================================================
void BSP_init(void) {
// configure the LEDs
gioInit();
LED2_PORT->DIR |= (1U << LED2_PIN); // set as output
LED3_PORT->DIR |= (1U << LED3_PIN); // set as output
// configure the Buttons
SWB_PORT->DIR &= (1U << SWB_PIN); // set as input
}
//............................................................................
void BSP_ledOff(void) {
LED2_PORT->DCLR = (1U << LED2_PIN);
}
//............................................................................
void BSP_ledOn(void) {
// exercise the FPU with some floating point computations
float volatile x = 3.1415926F;
x = x + 2.7182818F;
LED2_PORT->DSET = (1U << LED2_PIN);
}
// QF callbacks ==============================================================
void QF::onStartup(void) {
rtiInit(); // configure RTI with UC counter of 7
rtiSetPeriod(rtiCOUNTER_BLOCK0,
(uint32)((RTI_FREQ*1E6/(7+1))/BSP_TICKS_PER_SEC));
rtiEnableNotification(rtiNOTIFICATION_COMPARE0); // enable interrupt
rtiStartCounter(rtiCOUNTER_BLOCK0);
// NOTE: don't need to install the IRQ handler in VIM_RAM, because
// the standard handler rtiCompare0Interrupt() installed in the
// HALCoGen code is adequate
//
vimREG->FIRQPR0 &= ~(1U << 2); // designate interrupt as IRQ, NOTE00
vimREG->REQMASKSET0 = (1U << 2); // enable RTI interrupt
QF_INT_ENABLE_ALL(); // enable all interrupts (IRQ and FIQ)
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QV::onIdle(void) { // CATION: called with interrupts DISABLED, NOTE01
// toggle LED1 on and then off, see NOTE01
LED3_PORT->DSET = (1U << LED3_PIN);
LED3_PORT->DCLR = (1U << LED3_PIN);
#ifdef NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-R MCU.
//
QV_CPU_SLEEP(); // atomically go to sleep and enable interrupts
#else
QF_INT_ENABLE(); // just enable interrupts
#endif
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast(10000U));
systemREG1->SYSECR = 0; // perform system reset
}
///***************************************************************************
// NOTE00:
// The FIQ-type interrupts are never disabled in this QP port, therefore
// they can always preempt any code, including the IRQ-handlers (ISRs).
// Therefore, FIQ-type interrupts are "kernel-unaware" and must NEVER call
// any QP services, such as posting events.
//
// NOTE01:
// The QV_onIdle() callback is called with interrupts disabled, because the
// determination of the idle condition might change by any interrupt posting
// an event. QV_onIdle() must internally enable interrupts, ideally
// atomically with putting the CPU to the power-saving mode.
//
// NOTE02:
// One of the LEDs is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//