////////////////////////////////////////////////////////////////////////////// // Product: BSP for DPP on eZ430-RF2500, QK kernel, TI CCS MSP430 compiler // Last Updated for Version: 4.5.02 // Date of the Last Update: Oct 09, 2012 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Quantum Leaps Web sites: http://www.quantum-leaps.com // http://www.state-machine.com // e-mail: info@quantum-leaps.com ////////////////////////////////////////////////////////////////////////////// #include "qp_port.h" #include "dpp.h" #include "bsp.h" #include // MSP430 variant used ////////////////////////////////////////////////////////////////////////////// namespace DPP { Q_DEFINE_THIS_FILE // Local-scope objects ------------------------------------------------------- static uint32_t l_rnd; // random seed #define BSP_MCK 8000000U #define BSP_SMCLK 8000000U #define BSP_ACLK 12000U #define LED0_on() (P1OUT |= (uint8_t)BIT0) #define LED0_off() (P1OUT &= (uint8_t)~BIT0) #define LED0_toggle() (P1OUT ^= (uint8_t)BIT0) #define LED1_on() (P1OUT |= (uint8_t)BIT1) #define LED1_off() (P1OUT &= (uint8_t)~BIT1) #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; static uint8_t const l_timerA_ISR = 0; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif //............................................................................ #pragma vector = TIMERA0_VECTOR __interrupt void timerA_ISR(void) { #ifdef NDEBUG __low_power_mode_off_on_exit(); #endif QK_ISR_ENTRY(); // inform QK kernel about ISR entry #ifdef Q_SPY TACTL &= ~TAIFG; // clear the interrupt pending flag QS_tickTime_ += (((BSP_SMCLK / 8) + BSP_TICKS_PER_SEC/2) / BSP_TICKS_PER_SEC) + 1; #endif QP::QF::TICK(&l_timerA_ISR); QK_ISR_EXIT(); // inform QK kernel about ISR exit } //............................................................................ #pragma vector = PORT1_VECTOR __interrupt void port1_ISR(void) { // for testing static const QP::QEvt tstEvt = { MAX_SIG, 0U, 0U }; #ifdef NDEBUG __low_power_mode_off_on_exit(); #endif P1IFG &= ~BIT2; // clear interrupt source QK_ISR_ENTRY(); // inform QK kernel about ISR entry AO_Table->POST(&tstEvt, (void *)0); QK_ISR_EXIT(); // inform QK kernel about ISR exit } //............................................................................ void BSP_init(void) { WDTCTL = (WDTPW | WDTHOLD); // Stop WDT // configure the Basic Clock Module */ DCOCTL = CALDCO_8MHZ; // Set DCO to 8MHz BCSCTL1 = CALBC1_8MHZ; TACTL = (ID_3 | TASSEL_2 | MC_1); // SMCLK, /8 divider, upmode TACCR0 = (((BSP_SMCLK / 8) + BSP_TICKS_PER_SEC/2) / BSP_TICKS_PER_SEC); P1DIR |= (BIT0 | BIT1); // P1.0 and P1.1 outputs (LEDs) P1DIR &= ~BIT2; // P1.2 input (Switch TS1) P1REN |= BIT2; // enable pull-up resistor on P1.2 P1SEL &= ~BIT2; // enable I/O function on P1.2 P1IES |= BIT2; // interrupt edge select high->low P1IFG &= ~BIT2; // clear interrupt source BSP_randomSeed(1234U); if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing Q_ERROR(); } QS_RESET(); QS_OBJ_DICTIONARY(&l_timerA_ISR); } //............................................................................ void BSP_terminate(int16_t const result) { (void)result; } //............................................................................ void BSP_displayPhilStat(uint8_t n, char const *stat) { (void)n; (void)stat; LED0_toggle(); QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t const paused) { (void)paused; } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t const seed) { l_rnd = seed; } } // namespace DPP ////////////////////////////////////////////////////////////////////////////// //............................................................................ void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) { (void)file; // avoid compiler warning (void)line; // avoid compiler warning QF_INT_DISABLE(); // make sure that interrupts are disabled for (;;) { } } namespace QP { //............................................................................ void QF::onStartup(void) { TACCTL0 = CCIE; // Timer_A CCR0 interrupt enabled P1IE |= BIT2; // P1.2 interrupt enable (Switch TS1) } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QK::onIdle(void) { QF_INT_DISABLE(); LED1_on(); // switch LED1 on and off LED1_off(); QF_INT_ENABLE(); #ifdef Q_SPY if (((IFG2 & UCA0TXIFG)) != 0) { QF_INT_DISABLE(); uint16_t b = QS::getByte(); QF_INT_ENABLE(); if (b != QS_EOD) { UCA0TXBUF = (uint8_t)b; // stick the byte to the TX BUF } } else { QF_INT_ENABLE(); } #elif defined NDEBUG __low_power_mode_1(); // Enter LPM1; also UNLOCKS interrupts #endif } //---------------------------------------------------------------------------- #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[256]; // buffer for Quantum Spy initBuf(qsBuf, sizeof(qsBuf)); // configure USART0 P3SEL |= BIT4; // P3.4 = USART0 TXD UCA0CTL1 = UCSSEL_2; // SMCLK UCA0BR0 = 52; // 9600 from 8MHz UCA0BR1 = UCBRS0 | UCOS16; UCA0MCTL = UCBRS_2; UCA0CTL1 &= ~UCSWRST; // initialize USCI state machine // setup the QS filters... QS_FILTER_ON(QS_ALL_RECORDS); // QS_FILTER_OFF(QS_QEP_STATE_EMPTY); // QS_FILTER_OFF(QS_QEP_STATE_ENTRY); // QS_FILTER_OFF(QS_QEP_STATE_EXIT); // QS_FILTER_OFF(QS_QEP_STATE_INIT); // QS_FILTER_OFF(QS_QEP_INIT_TRAN); // QS_FILTER_OFF(QS_QEP_INTERN_TRAN); // QS_FILTER_OFF(QS_QEP_TRAN); // QS_FILTER_OFF(QS_QEP_dummyD); QS_FILTER_OFF(QS_QF_ACTIVE_ADD); QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE); QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO); QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO); QS_FILTER_OFF(QS_QF_ACTIVE_GET); QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST); QS_FILTER_OFF(QS_QF_EQUEUE_INIT); QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO); QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO); QS_FILTER_OFF(QS_QF_EQUEUE_GET); QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST); QS_FILTER_OFF(QS_QF_MPOOL_INIT); QS_FILTER_OFF(QS_QF_MPOOL_GET); QS_FILTER_OFF(QS_QF_MPOOL_PUT); QS_FILTER_OFF(QS_QF_PUBLISH); QS_FILTER_OFF(QS_QF_NEW); QS_FILTER_OFF(QS_QF_GC_ATTEMPT); QS_FILTER_OFF(QS_QF_GC); // QS_FILTER_OFF(QS_QF_TICK); QS_FILTER_OFF(QS_QF_TIMEEVT_ARM); QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_REARM); QS_FILTER_OFF(QS_QF_TIMEEVT_POST); QS_FILTER_OFF(QS_QF_CRIT_ENTRY); QS_FILTER_OFF(QS_QF_CRIT_EXIT); QS_FILTER_OFF(QS_QF_ISR_ENTRY); QS_FILTER_OFF(QS_QF_ISR_EXIT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // invoked with interrupts disabled if ((TACTL & TAIFG) == 0) { // interrupt not pending? return DPP::QS_tickTime_ + TAR; } else { // the rollover occured, but the timerA_ISR did not run yet return DPP::QS_tickTime_ + (((BSP_SMCLK / 8) + DPP::BSP_TICKS_PER_SEC/2) / DPP::BSP_TICKS_PER_SEC) + 1 + TAR; } } //............................................................................ void QS::onFlush(void) { uint16_t b; while ((b = getByte()) != QS_EOD) { // next QS trace byte available? while ((IFG2 & UCA0TXIFG) == 0) { // TX not ready? } UCA0TXBUF = (uint8_t)b; // stick the byte to the TX BUF } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP ////////////////////////////////////////////////////////////////////////////// // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //