//**************************************************************************** // Product: "Blinky" on EFM32-SLSTK3401A board, preemptive QK kernel // Last Updated for Version: 5.6.5 // Date of the Last Update: 2016-06-02 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // http://www.state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "blinky.h" #include "bsp.h" #include "em_device.h" // the device specific header (SiLabs) #include "em_cmu.h" // Clock Management Unit (SiLabs) #include "em_gpio.h" // GPIO (SiLabs) // add other drivers if necessary... #ifdef Q_SPY #error Simple Blinky Application does not provide Spy build configuration #endif //Q_DEFINE_THIS_FILE // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { SYSTICK_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- #define LED0_PIN 4 #define LED0_PORT gpioPortF #define LED1_PIN 5 #define LED1_PORT gpioPortF #define BTN_SW1 (1U << 4) #define BTN_SW2 (1U << 0) // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { QK_ISR_ENTRY(); // inform QK about entering an ISR QF::TICK_X(0U, (void *)0); // process time events for rate 0 QK_ISR_EXIT(); // inform QK about exiting an ISR } } // extern "C" // BSP functions ============================================================= void BSP_init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // configure the FPU usage by choosing one of the options... #if 1 // OPTION 1: // Use the automatic FPU state preservation and the FPU lazy stacking. // // NOTE: // Use the following setting when FPU is used in more than one task or // in any ISRs. This setting is the safest and recommended, but requires // extra stack space and CPU cycles. // FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos); #else // OPTION 2: // Do NOT to use the automatic FPU state preservation and // do NOT to use the FPU lazy stacking. // // NOTE: // Use the following setting when FPU is used in ONE task only and not // in any ISR. This setting is very efficient, but if more than one task // (or ISR) start using the FPU, this can lead to corruption of the // FPU registers. This option should be used with CAUTION. // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); #endif // enable clock for to the peripherals used by this application... CMU_ClockEnable(cmuClock_HFPER, true); CMU_ClockEnable(cmuClock_GPIO, true); CMU_ClockEnable(cmuClock_HFPER, true); CMU_ClockEnable(cmuClock_GPIO, true); // configure the LEDs GPIO_PinModeSet(LED0_PORT, LED0_PIN, gpioModePushPull, 0); GPIO_PinModeSet(LED1_PORT, LED1_PIN, gpioModePushPull, 0); GPIO_PinOutClear(LED0_PORT, LED0_PIN); GPIO_PinOutClear(LED1_PORT, LED1_PIN); // configure the Buttons //... } //............................................................................ void BSP_ledOff(void) { //GPIO_PinOutClear(LED0_PORT, LED0_PIN); GPIO->P[LED0_PORT].DOUT &= ~(1U << LED0_PIN); } //............................................................................ void BSP_ledOn(void) { // exercise the FPU with some floating point computations float volatile x = 3.1415926F; x = x + 2.7182818F; //GPIO_PinOutSet(LED0_PORT, LED0_PIN); GPIO->P[LED0_PORT].DOUT |= (1U << LED0_PIN); } // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // assing all priority bits for preemption-prio. and none to sub-prio. NVIC_SetPriorityGrouping(0U); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); // ... // enable IRQs... } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QK::onIdle(void) { // toggle LED2 on and then off, see NOTE01 QF_INT_DISABLE(); GPIO->P[LED1_PORT].DOUT |= (1U << LED1_PIN); GPIO->P[LED1_PORT].DOUT &= ~(1U << LED1_PIN); QF_INT_ENABLE(); #ifdef NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call any QF services. These ISRs // are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF services. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // One of the LEDs is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //