///*************************************************************************** // Product: "Fly 'n' Shoot" game example for Win32-GUI // Last updated for version 5.6.5 // Last updated on 2016-05-13 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // http://www.state-machine.com // mailto:info@state-machine.com ///*************************************************************************** #include "qpcpp.h" #include "game.h" #include "bsp.h" #include "qwin_gui.h" // QWIN GUI #include "resource.h" // GUI resource IDs generated by the resource editior #include // for _snprintf_s() #include #ifdef Q_SPY #define WIN32_LEAN_AND_MEAN #include // Win32 API for multithreading #include // for Windows network facilities #endif ///*************************************************************************** // thread function for running the application main() static DWORD WINAPI appThread(LPVOID par) { (void)par; // unused parameter return main_gui(); // run the QF application } ///*************************************************************************** namespace GAME { Q_DEFINE_THIS_FILE // local variables ----------------------------------------------------------- static HINSTANCE l_hInst; // this application instance static HWND l_hWnd; // main window handle static LPSTR l_cmdLine; // the command line string static GraphicDisplay l_lcd; // LCD display on EFM32-SLSTK3401A static SegmentDisplay l_userLED0; // USER LED0 on EFM32-SLSTK3401A static SegmentDisplay l_userLED1; // USER LED1 on EFM32-SLSTK3401A static SegmentDisplay l_scoreBoard; // segment display for the score static OwnerDrawnButton l_userBtn0; // USER Button0 on EFM32-SLSTK3401A static OwnerDrawnButton l_userBtn1; // USER Button1 on EFM32-SLSTK3401A // (R,G,B) colors for the LCD display static BYTE const c_onColor[3] = { 0x07U, 0x07U, 0x07U }; // dark grey static BYTE const c_offColor[3] = { 0xA0U, 0xA0U, 0xA0U }; // light grey // LCD geometry and frame buffer static uint32_t l_fb[BSP_SCREEN_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U]; // the walls buffer static uint32_t l_walls[GAME_TUNNEL_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U]; static unsigned l_rnd; // random seed static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h); static void paintBitsClear(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h); static void playerTrigger(void); #ifdef Q_SPY enum QSUserRecords { PLAYER_TRIGGER = QP::QS_USER, COMMAND_STAT }; static SOCKET l_sock = INVALID_SOCKET; static uint8_t const l_clock_tick = 0U; static uint8_t const l_mouse = 0U; #endif // Local functions ----------------------------------------------------------- static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg, WPARAM wParam, LPARAM lParam); //............................................................................ //..........................................................................*/ void BSP_init(void) { if (QS_INIT(l_cmdLine) == (uint8_t)0) { // QS initialization failed? MessageBox(l_hWnd, "Cannot connect to QSPY via TCP/IP\n" "Please make sure that 'qspy -t' is running", "QS_INIT() Error", MB_OK | MB_ICONEXCLAMATION | MB_APPLMODAL); } QS_OBJ_DICTIONARY(&l_clock_tick); // must be called *after* QF_init() QS_USR_DICTIONARY(PLAYER_TRIGGER); QS_USR_DICTIONARY(COMMAND_STAT); } //..........................................................................*/ void BSP_terminate(int16_t result) { #ifdef Q_SPY if (l_sock != INVALID_SOCKET) { closesocket(l_sock); l_sock = INVALID_SOCKET; } #endif QP::QF::stop(); // stop the main QF application and the ticker thread // cleanup all QWIN resources... OwnerDrawnButton_xtor(&l_userBtn0); // cleanup the l_userBtn0 resources OwnerDrawnButton_xtor(&l_userBtn1); // cleanup the l_userBtn1 resources SegmentDisplay_xtor(&l_userLED0); // cleanup the l_userLED0 resources SegmentDisplay_xtor(&l_userLED1); // cleanup the l_userLED1 resources SegmentDisplay_xtor(&l_scoreBoard); // cleanup the scoreBoard resources GraphicDisplay_xtor(&l_lcd); // cleanup the l_lcd resources // end the main dialog EndDialog(l_hWnd, result); } //..........................................................................*/ void BSP_updateScreen(void) { UINT x, y; // turn LED1 on SegmentDisplay_setSegment(&l_userLED1, 0U, 1U); // map the LCD pixels to the GraphicDisplay pixels... for (y = 0; y < BSP_SCREEN_HEIGHT; ++y) { for (x = 0; x < BSP_SCREEN_WIDTH; ++x) { uint32_t bits = l_fb[y][x >> 5]; if ((bits & (1U << (x & 0x1FU))) != 0U) { GraphicDisplay_setPixel(&l_lcd, x, y, c_onColor); } else { GraphicDisplay_clearPixel(&l_lcd, x, y); } } } GraphicDisplay_redraw(&l_lcd); // redraw the updated display // turn LED1 off SegmentDisplay_setSegment(&l_userLED1, 0U, 0U); } //..........................................................................*/ void BSP_clearFB() { uint_fast8_t y; for (y = 0U; y < BSP_SCREEN_HEIGHT; ++y) { l_fb[y][0] = 0U; l_fb[y][1] = 0U; l_fb[y][2] = 0U; l_fb[y][3] = 0U; } } //..........................................................................*/ void BSP_clearWalls() { uint_fast8_t y; for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) { l_walls[y][0] = 0U; l_walls[y][1] = 0U; l_walls[y][2] = 0U; l_walls[y][3] = 0U; } } //..........................................................................*/ bool BSP_isThrottle(void) { // is the throttle button depressed? return OwnerDrawnButton_isDepressed(&l_userBtn1) != 0; } //..........................................................................*/ void BSP_paintString(uint8_t x, uint8_t y, char const *str) { static uint8_t const font5x7[95][7] = { { 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U }, // { 0x04U, 0x04U, 0x04U, 0x04U, 0x00U, 0x00U, 0x04U }, // ! { 0x0AU, 0x0AU, 0x0AU, 0x00U, 0x00U, 0x00U, 0x00U }, // " { 0x0AU, 0x0AU, 0x1FU, 0x0AU, 0x1FU, 0x0AU, 0x0AU }, // # { 0x04U, 0x1EU, 0x05U, 0x0EU, 0x14U, 0x0FU, 0x04U }, // $ { 0x03U, 0x13U, 0x08U, 0x04U, 0x02U, 0x19U, 0x18U }, // % { 0x06U, 0x09U, 0x05U, 0x02U, 0x15U, 0x09U, 0x16U }, // & { 0x06U, 0x04U, 0x02U, 0x00U, 0x00U, 0x00U, 0x00U }, // ' { 0x08U, 0x04U, 0x02U, 0x02U, 0x02U, 0x04U, 0x08U }, // ( { 0x02U, 0x04U, 0x08U, 0x08U, 0x08U, 0x04U, 0x02U }, // ) { 0x00U, 0x04U, 0x15U, 0x0EU, 0x15U, 0x04U, 0x00U }, // * { 0x00U, 0x04U, 0x04U, 0x1FU, 0x04U, 0x04U, 0x00U }, // + { 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x04U, 0x02U }, // , { 0x00U, 0x00U, 0x00U, 0x1FU, 0x00U, 0x00U, 0x00U }, // - { 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x06U }, // . { 0x00U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x00U }, // / { 0x0EU, 0x11U, 0x19U, 0x15U, 0x13U, 0x11U, 0x0EU }, // 0 { 0x04U, 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // 1 { 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x02U, 0x1FU }, // 2 { 0x1FU, 0x08U, 0x04U, 0x08U, 0x10U, 0x11U, 0x0EU }, // 3 { 0x08U, 0x0CU, 0x0AU, 0x09U, 0x1FU, 0x08U, 0x08U }, // 4 { 0x1FU, 0x01U, 0x0FU, 0x10U, 0x10U, 0x11U, 0x0EU }, // 5 { 0x0CU, 0x02U, 0x01U, 0x0FU, 0x11U, 0x11U, 0x0EU }, // 6 { 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x02U, 0x02U }, // 7 { 0x0EU, 0x11U, 0x11U, 0x0EU, 0x11U, 0x11U, 0x0EU }, // 8 { 0x0EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x08U, 0x06U }, // 9 { 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x06U, 0x00U }, // : { 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x04U, 0x02U }, // ; { 0x08U, 0x04U, 0x02U, 0x01U, 0x02U, 0x04U, 0x08U }, // < { 0x00U, 0x00U, 0x1FU, 0x00U, 0x1FU, 0x00U, 0x00U }, // = { 0x02U, 0x04U, 0x08U, 0x10U, 0x08U, 0x04U, 0x02U }, // > { 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x00U, 0x04U }, // ? { 0x0EU, 0x11U, 0x10U, 0x16U, 0x15U, 0x15U, 0x0EU }, // @ { 0x0EU, 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U }, // A { 0x0FU, 0x11U, 0x11U, 0x0FU, 0x11U, 0x11U, 0x0FU }, // B { 0x0EU, 0x11U, 0x01U, 0x01U, 0x01U, 0x11U, 0x0EU }, // C { 0x07U, 0x09U, 0x11U, 0x11U, 0x11U, 0x09U, 0x07U }, // D { 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x1FU }, // E { 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x01U }, // F { 0x0EU, 0x11U, 0x01U, 0x1DU, 0x11U, 0x11U, 0x1EU }, // G { 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U, 0x11U }, // H { 0x0EU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // I { 0x1CU, 0x08U, 0x08U, 0x08U, 0x08U, 0x09U, 0x06U }, // J { 0x11U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U, 0x11U }, // K { 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x1FU }, // L { 0x11U, 0x1BU, 0x15U, 0x15U, 0x11U, 0x11U, 0x11U }, // M { 0x11U, 0x11U, 0x13U, 0x15U, 0x19U, 0x11U, 0x11U }, // N { 0x0EU, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, // O { 0x0FU, 0x11U, 0x11U, 0x0FU, 0x01U, 0x01U, 0x01U }, // P { 0x0EU, 0x11U, 0x11U, 0x11U, 0x15U, 0x09U, 0x16U }, // Q { 0x0FU, 0x11U, 0x11U, 0x0FU, 0x05U, 0x09U, 0x11U }, // R { 0x1EU, 0x01U, 0x01U, 0x0EU, 0x10U, 0x10U, 0x0FU }, // S { 0x1FU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, // T { 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, // U { 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, // V { 0x11U, 0x11U, 0x11U, 0x15U, 0x15U, 0x15U, 0x0AU }, // W { 0x11U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U, 0x11U }, // X { 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U, 0x04U, 0x04U }, // Y { 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x1FU }, // Z { 0x0EU, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x0EU }, // [ { 0x00U, 0x01U, 0x02U, 0x04U, 0x08U, 0x10U, 0x00U }, // back-slash { 0x0EU, 0x08U, 0x08U, 0x08U, 0x08U, 0x08U, 0x0EU }, // ] { 0x04U, 0x0AU, 0x11U, 0x00U, 0x00U, 0x00U, 0x00U }, // ^ { 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x1FU }, // _ { 0x02U, 0x04U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, // ` { 0x00U, 0x00U, 0x0EU, 0x10U, 0x1EU, 0x11U, 0x1EU }, // a { 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x0FU }, // b { 0x00U, 0x00U, 0x0EU, 0x01U, 0x01U, 0x11U, 0x0EU }, // c { 0x10U, 0x10U, 0x16U, 0x19U, 0x11U, 0x11U, 0x1EU }, // d { 0x00U, 0x00U, 0x0EU, 0x11U, 0x1FU, 0x01U, 0x0EU }, // e { 0x0CU, 0x12U, 0x02U, 0x07U, 0x02U, 0x02U, 0x02U }, // f { 0x00U, 0x1EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, // g { 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, // h { 0x04U, 0x00U, 0x06U, 0x04U, 0x04U, 0x04U, 0x0EU }, // i { 0x08U, 0x00U, 0x0CU, 0x08U, 0x08U, 0x09U, 0x06U }, // j { 0x01U, 0x01U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U }, // k { 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // l { 0x00U, 0x00U, 0x0BU, 0x15U, 0x15U, 0x11U, 0x11U }, // m { 0x00U, 0x00U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, // n { 0x00U, 0x00U, 0x0EU, 0x11U, 0x11U, 0x11U, 0x0EU }, // o { 0x00U, 0x00U, 0x0FU, 0x11U, 0x0FU, 0x01U, 0x01U }, // p { 0x00U, 0x00U, 0x16U, 0x19U, 0x1EU, 0x10U, 0x10U }, // q { 0x00U, 0x00U, 0x0DU, 0x13U, 0x01U, 0x01U, 0x01U }, // r { 0x00U, 0x00U, 0x0EU, 0x01U, 0x0EU, 0x10U, 0x0FU }, // s { 0x02U, 0x02U, 0x07U, 0x02U, 0x02U, 0x12U, 0x0CU }, // t { 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x19U, 0x16U }, // u { 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, // v { 0x00U, 0x00U, 0x11U, 0x11U, 0x15U, 0x15U, 0x0AU }, // w { 0x00U, 0x00U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U }, // x { 0x00U, 0x00U, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, // y { 0x00U, 0x00U, 0x1FU, 0x08U, 0x04U, 0x02U, 0x1FU }, // z { 0x08U, 0x04U, 0x04U, 0x02U, 0x04U, 0x04U, 0x08U }, // { { 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, // | { 0x02U, 0x04U, 0x04U, 0x08U, 0x04U, 0x04U, 0x02U }, // } { 0x02U, 0x15U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, // ~ }; for (; *str != '\0'; ++str, x += 6) { uint8_t const *ch = &font5x7[*str - ' '][0]; paintBitsClear(x, y, ch, 7); } } //==========================================================================*/ typedef struct { // the auxiliary structure to hold const bitmaps uint8_t const *bits; // the bits in the bitmap uint8_t height; // the height of the bitmap } Bitmap; // bitmap of the Ship: // // x.... // xxx.. // xxxxx // static uint8_t const ship_bits[] = { 0x01U, 0x07U, 0x1FU }; // bitmap of the Missile: // // xxxx // static uint8_t const missile_bits[] = { 0x0FU }; // bitmap of the Mine type-1: // // .x. // xxx // .x. // static uint8_t const mine1_bits[] = { 0x02U, 0x07U, 0x02U }; // bitmap of the Mine type-2: // // x..x // .xx. // .xx. // x..x // static uint8_t const mine2_bits[] = { 0x09U, 0x06U, 0x06U, 0x09U }; // Mine type-2 is nastier than Mine type-1. The type-2 mine can // hit the Ship with any of its "tentacles". However, it can be // destroyed by the Missile only by hitting its center, defined as // the following bitmap: // // .... // .xx. // .xx. // static uint8_t const mine2_missile_bits[] = { 0x00U, 0x06U, 0x06U }; // // The bitmap of the explosion stage 0: // // ....... // ...x... // ..x.x.. // ...x... // static uint8_t const explosion0_bits[] = { 0x00U, 0x08U, 0x14U, 0x08U }; // // The bitmap of the explosion stage 1: // // ....... // ..x.x.. // ...x... // ..x.x.. // static uint8_t const explosion1_bits[] = { 0x00U, 0x14U, 0x08U, 0x14U }; // // The bitmap of the explosion stage 2: // // .x...x. // ..x.x.. // ...x... // ..x.x.. // .x...x. // static uint8_t const explosion2_bits[] = { 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U }; // // The bitmap of the explosion stage 3: // // x..x..x // .x.x.x. // ..x.x.. // xx.x.xx // ..x.x.. // .x.x.x. // x..x..x // static uint8_t const explosion3_bits[] = { 0x49, 0x2A, 0x14, 0x6B, 0x14, 0x2A, 0x49 }; static Bitmap const l_bitmap[MAX_BMP] = { { ship_bits, Q_DIM(ship_bits) }, { missile_bits, Q_DIM(missile_bits) }, { mine1_bits, Q_DIM(mine1_bits) }, { mine2_bits, Q_DIM(mine2_bits) }, { mine2_missile_bits, Q_DIM(mine2_missile_bits) }, { explosion0_bits, Q_DIM(explosion0_bits) }, { explosion1_bits, Q_DIM(explosion1_bits) }, { explosion2_bits, Q_DIM(explosion2_bits) }, { explosion3_bits, Q_DIM(explosion3_bits) } }; //..........................................................................*/ void BSP_paintBitmap(uint8_t x, uint8_t y, uint8_t bmp_id) { Bitmap const *bmp = &l_bitmap[bmp_id]; paintBits(x, y, bmp->bits, bmp->height); } //..........................................................................*/ void BSP_advanceWalls(uint8_t top, uint8_t bottom) { uint_fast8_t y; for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) { // shift the walls one pixel to the left l_walls[y][0] = (l_walls[y][0] >> 1) | (l_walls[y][1] << 31); l_walls[y][1] = (l_walls[y][1] >> 1) | (l_walls[y][2] << 31); l_walls[y][2] = (l_walls[y][2] >> 1) | (l_walls[y][3] << 31); l_walls[y][3] = (l_walls[y][3] >> 1); // add new column of walls at the end if (y <= top) { l_walls[y][3] |= (1U << 31); } if (y >= (GAME_TUNNEL_HEIGHT - bottom)) { l_walls[y][3] |= (1U << 31); } // copy the walls to the frame buffer l_fb[y][0] = l_walls[y][0]; l_fb[y][1] = l_walls[y][1]; l_fb[y][2] = l_walls[y][2]; l_fb[y][3] = l_walls[y][3]; } } //..........................................................................*/ bool BSP_doBitmapsOverlap(uint8_t bmp_id1, uint8_t x1, uint8_t y1, uint8_t bmp_id2, uint8_t x2, uint8_t y2) { uint8_t y; uint8_t y0; uint8_t h; uint32_t bits1; uint32_t bits2; Bitmap const *bmp1; Bitmap const *bmp2; Q_REQUIRE((bmp_id1 < Q_DIM(l_bitmap)) && (bmp_id2 < Q_DIM(l_bitmap))); // are the bitmaps close enough in x? if (x1 >= x2) { if (x1 > x2 + 8U) { return false; } x1 -= x2; x2 = 0U; } else { if (x2 > x1 + 8U) { return false; } x2 -= x1; x1 = 0U; } bmp1 = &l_bitmap[bmp_id1]; bmp2 = &l_bitmap[bmp_id2]; if ((y1 <= y2) && (y1 + bmp1->height > y2)) { y0 = y2 - y1; h = y1 + bmp1->height - y2; if (h > bmp2->height) { h = bmp2->height; } for (y = 0; y < h; ++y) { // scan over the overlapping rows bits1 = ((uint32_t)bmp1->bits[y + y0] << x1); bits2 = ((uint32_t)bmp2->bits[y] << x2); if ((bits1 & bits2) != 0U) { // do the bits overlap? return true; // yes! } } } else { if ((y1 > y2) && (y2 + bmp2->height > y1)) { y0 = y1 - y2; h = y2 + bmp2->height - y1; if (h > bmp1->height) { h = bmp1->height; } for (y = 0; y < h; ++y) { // scan over the overlapping rows bits1 = ((uint32_t)bmp1->bits[y] << x1); bits2 = ((uint32_t)bmp2->bits[y + y0] << x2); if ((bits1 & bits2) != 0U) { // do the bits overlap? return true; // yes! } } } } return false; // the bitmaps do not overlap } //..........................................................................*/ bool BSP_isWallHit(uint8_t bmp_id, uint8_t x, uint8_t y) { Bitmap const *bmp = &l_bitmap[bmp_id]; uint32_t shft = (x & 0x1FU); uint32_t *walls = &l_walls[y][x >> 5]; for (y = 0; y < bmp->height; ++y, walls += (BSP_SCREEN_WIDTH >> 5)) { if (*walls & ((uint32_t)bmp->bits[y] << shft)) { return true; } if (shft > 24U) { if (*(walls + 1) & ((uint32_t)bmp->bits[y] >> (32U - shft))) { return true; } } } return false; } //..........................................................................*/ void BSP_updateScore(uint16_t score) { uint8_t seg[5]; char str[5]; if (score == 0U) { BSP_paintString(1U, BSP_SCREEN_HEIGHT - 8U, "SCORE:"); } seg[0] = score % 10U; score /= 10U; seg[1] = score % 10U; score /= 10U; seg[2] = score % 10U; score /= 10U; seg[3] = score % 10U; // update the SCORE area on the screeen str[0] = seg[3] + '0'; str[1] = seg[2] + '0'; str[2] = seg[1] + '0'; str[3] = seg[0] + '0'; str[4] = '\0'; BSP_paintString(6U*6U, BSP_SCREEN_HEIGHT - 8U, str); // update the score in the l_scoreBoard SegmentDisplay SegmentDisplay_setSegment(&l_scoreBoard, 0U, (UINT)seg[0]); SegmentDisplay_setSegment(&l_scoreBoard, 1U, (UINT)seg[1]); SegmentDisplay_setSegment(&l_scoreBoard, 2U, (UINT)seg[2]); SegmentDisplay_setSegment(&l_scoreBoard, 3U, (UINT)seg[3]); } //..........................................................................*/ void BSP_displayOn(void) { SegmentDisplay_setSegment(&l_userLED0, 0U, 1U); } //..........................................................................*/ void BSP_displayOff(void) { SegmentDisplay_setSegment(&l_userLED0, 0U, 0U); GraphicDisplay_clear(&l_lcd); GraphicDisplay_redraw(&l_lcd); } //..........................................................................*/ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //..........................................................................*/ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } //--------------------------------------------------------------------------*/ //..........................................................................*/ static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h) { uint32_t *fb = &l_fb[y][x >> 5]; uint32_t shft = (x & 0x1FU); for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) { *fb |= ((uint32_t)bits[y] << shft); if (shft > 24U) { *(fb + 1) |= ((uint32_t)bits[y] >> (32U - shft)); } } } //..........................................................................*/ static void paintBitsClear(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h) { uint32_t *fb = &l_fb[y][x >> 5]; uint32_t shft = (x & 0x1FU); uint32_t mask1 = ~((uint32_t)0xFFU << shft); uint32_t mask2; if (shft > 24U) { mask2 = ~(0xFFU >> (32U - shft)); } for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) { *fb = ((*fb & mask1) | ((uint32_t)bits[y] << shft)); if (shft > 24U) { *(fb + 1) = ((*(fb + 1) & mask2) | ((uint32_t)bits[y] >> (32U - shft))); } } } //............................................................................ //............................................................................ extern "C" int WINAPI WinMain(HINSTANCE hInst, HINSTANCE /*hPrevInst*/, LPSTR cmdLine, int iCmdShow) { l_hInst = hInst; // save the application instance l_cmdLine = cmdLine; // save the command line string // create the main custom dialog window HWND hWnd = CreateCustDialog(hInst, IDD_APPLICATION, NULL, &WndProc, "QP_APP"); ShowWindow(hWnd, iCmdShow); // show the main window // enter the message loop... MSG msg; while (GetMessage(&msg, NULL, 0, 0)) { TranslateMessage(&msg); DispatchMessage(&msg); } BSP_terminate(0); return msg.wParam; } //............................................................................ static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg, WPARAM wParam, LPARAM lParam) { switch (iMsg) { // Perform initialization upon cration of the main dialog window // NOTE: Any child-windows are NOT created yet at this time, so // the GetDlgItem() function can't be used (it will return NULL). // case WM_CREATE: { l_hWnd = hWnd; // save the window handle // initialize the owner-drawn buttons... // NOTE: must be done *before* the first drawing of the buttons, // so WM_INITDIALOG is too late. // OwnerDrawnButton_init(&l_userBtn0, IDC_USER0, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)), LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)), LoadCursor(NULL, IDC_HAND)); OwnerDrawnButton_init(&l_userBtn1, IDC_USER1, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)), LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)), LoadCursor(NULL, IDC_HAND)); return 0; } // Perform initialization after all child windows have been created case WM_INITDIALOG: { GraphicDisplay_init(&l_lcd, 128, 128, IDC_LCD, c_offColor); SegmentDisplay_init(&l_userLED0, 1U, // 1 "segment" (the LED0 itself) 2U); // 2 bitmaps (for LED0 OFF/ON states) SegmentDisplay_initSegment(&l_userLED0, 0U, IDC_LED0); SegmentDisplay_initBitmap(&l_userLED0, 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_OFF))); SegmentDisplay_initBitmap(&l_userLED0, 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_ON))); SegmentDisplay_init(&l_userLED1, 1U, // 1 "segment" (the LED1 itself) 2U); // 2 bitmaps (for LED1 OFF/ON states) SegmentDisplay_initSegment(&l_userLED1, 0U, IDC_LED1); SegmentDisplay_initBitmap(&l_userLED1, 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_OFF))); SegmentDisplay_initBitmap(&l_userLED1, 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_ON))); SegmentDisplay_init(&l_scoreBoard, 4U, // 4 "segments" (digits 0-3) 10U); // 10 bitmaps (for 0-9 states) SegmentDisplay_initSegment(&l_scoreBoard, 0U, IDC_SEG0); SegmentDisplay_initSegment(&l_scoreBoard, 1U, IDC_SEG1); SegmentDisplay_initSegment(&l_scoreBoard, 2U, IDC_SEG2); SegmentDisplay_initSegment(&l_scoreBoard, 3U, IDC_SEG3); SegmentDisplay_initBitmap(&l_scoreBoard, 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG0))); SegmentDisplay_initBitmap(&l_scoreBoard, 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG1))); SegmentDisplay_initBitmap(&l_scoreBoard, 2U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG2))); SegmentDisplay_initBitmap(&l_scoreBoard, 3U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG3))); SegmentDisplay_initBitmap(&l_scoreBoard, 4U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG4))); SegmentDisplay_initBitmap(&l_scoreBoard, 5U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG5))); SegmentDisplay_initBitmap(&l_scoreBoard, 6U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG6))); SegmentDisplay_initBitmap(&l_scoreBoard, 7U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG7))); SegmentDisplay_initBitmap(&l_scoreBoard, 8U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG8))); SegmentDisplay_initBitmap(&l_scoreBoard, 9U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG9))); BSP_updateScore(0U); // --> QP: spawn the application thread to run main_gui() Q_ALLEGE(CreateThread(NULL, 0, &appThread, NULL, 0, NULL) != (HANDLE)0); return 0; } case WM_DESTROY: { OutputDebugString("DESTROY\n"); PostQuitMessage(0); return 0; } // commands from regular buttons and menus... case WM_COMMAND: { SetFocus(hWnd); switch (wParam) { case IDOK: case IDCANCEL: { OutputDebugString("QUIT\n"); PostQuitMessage(0); break; } } return 0; } // owner-drawn buttons... case WM_DRAWITEM: { LPDRAWITEMSTRUCT pdis = (LPDRAWITEMSTRUCT)lParam; switch (pdis->CtlID) { case IDC_USER0: { // USER owner-drawn Button0 OutputDebugString("USER0\n"); switch (OwnerDrawnButton_draw(&l_userBtn0, pdis)) { case BTN_DEPRESSED: { playerTrigger(); SegmentDisplay_setSegment(&l_userLED0, 0U, 1U); break; } case BTN_RELEASED: { SegmentDisplay_setSegment(&l_userLED0, 0U, 0U); break; } default: { break; } } break; } case IDC_USER1: { // USER owner-drawn Button1 OutputDebugString("USER1\n"); switch (OwnerDrawnButton_draw(&l_userBtn1, pdis)) { default: { break; } } break; } } return 0; } // mouse wheel input... case WM_MOUSEWHEEL: { OutputDebugString("MOUSEWHEEL\n"); return 0; } // keyboard input... case WM_KEYDOWN: { OutputDebugString("KEYDOWN\n"); switch (wParam) { case VK_SPACE: playerTrigger(); OwnerDrawnButton_set(&l_userBtn0, 1); break; } return 0; } case WM_KEYUP: { OutputDebugString("KEYUP\n"); switch (wParam) { case VK_SPACE: OwnerDrawnButton_set(&l_userBtn0, 0); break; } return 0; } } return DefWindowProc(hWnd, iMsg, wParam, lParam); } //..........................................................................*/ static void playerTrigger(void) { static QP::QEvt const fireEvt = { PLAYER_TRIGGER_SIG, 0U, 0U }; QP::QF::PUBLISH(&fireEvt, static_cast(0)); } } // namespace GAME ///*************************************************************************** namespace QP { //............................................................................ void QF::onStartup(void) { QF_setTickRate(GAME::BSP_TICKS_PER_SEC); // set the desired tick rate } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QF_onClockTick(void) { static QP::QEvt const tickEvt = QEVT_INITIALIZER(GAME::TIME_TICK_SIG); QP::QF::TICK_X(0U, &GAME::l_clock_tick); // process time events at rate 0 QP::QF::PUBLISH(&tickEvt, &GAME::l_clock_tick); // publish the tick event } //............................................................................ extern "C" void Q_onAssert(char const * const module, int loc) { QF::stop(); // stop ticking QS_ASSERTION(module, loc, 10000U); // report assertion to QS char message[80]; SNPRINTF_S(message, Q_DIM(message) - 1, "Assertion failed in module %s location %d", module, loc); MessageBox(GAME::l_hWnd, message, "!!! ASSERTION !!!", MB_OK | MB_ICONEXCLAMATION | MB_APPLMODAL); PostQuitMessage(-1); } //---------------------------------------------------------------------------- #ifdef Q_SPY // define QS callbacks #include // In this demo, the QS software tracing output is sent out of the application // through a TCP/IP socket. This requires the QSPY host application to // be started first to open a server socket (qspy -t ...) to wait for the // incoming TCP/IP connection from the GAME demo. // // In an embedded target, the QS software tracing output can be sent out // using any method available, such as a UART. This would require changing // the implementation of the functions in this section, but the rest of the // application code does not "know" (and should not care) how the QS ouptut // is actually performed. In other words, the rest of the application does NOT // need to change in any way to produce QS output. //............................................................................ extern "C" DWORD WINAPI idleThread(LPVOID par) { // signature for CreateThread() (void)par; while (GAME::l_sock != INVALID_SOCKET) { uint8_t const *block; // try to receive bytes from the QS socket... uint16_t nBytes = QS::rxGetNfree(); if (nBytes > 0U) { uint8_t buf[64]; int status; if (nBytes > sizeof(buf)) { nBytes = sizeof(buf); } status = recv(GAME::l_sock, reinterpret_cast(&buf[0]), static_cast(nBytes), 0); if (status != SOCKET_ERROR) { uint16_t i; nBytes = static_cast(status); for (i = 0U; i < nBytes; ++i) { QS::rxPut(buf[i]); } } } QS::rxParse(); // parse all the received bytes nBytes = 1024U; QF_CRIT_ENTRY(dummy); block = QS::getBlock(&nBytes); QF_CRIT_EXIT(dummy); if (block != static_cast(0)) { send(GAME::l_sock, reinterpret_cast(block), static_cast(nBytes), 0); } Sleep(20); // sleep for xx milliseconds } return (DWORD)0; // return success } //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[1024]; // buffer for QS output static uint8_t qsRxBuf[100]; // buffer for QS receive channel static WSADATA wsaData; char hostName[64]; char const *src; char *dst; USHORT port = 6601; // default QSPY server port ULONG ioctl_opt = 1; struct sockaddr_in sockAddr; struct hostent *server; initBuf(qsBuf, sizeof(qsBuf)); rxInitBuf(qsRxBuf, sizeof(qsRxBuf)); // initialize Windows sockets if (WSAStartup(MAKEWORD(2,0), &wsaData) == SOCKET_ERROR) { printf("Windows Sockets cannot be initialized."); return (uint8_t)0; } src = (arg != (void const *)0) ? (char const *)arg : "localhost"; dst = hostName; while ((*src != '\0') && (*src != ':') && (dst < &hostName[sizeof(hostName)])) { *dst++ = *src++; } *dst = '\0'; if (*src == ':') { port = (USHORT)strtoul(src + 1, NULL, 10); } GAME::l_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); // TCP socket if (GAME::l_sock == INVALID_SOCKET){ printf("Socket cannot be created; error 0x%08X\n", WSAGetLastError()); return false; // failure } server = gethostbyname(hostName); if (server == NULL) { printf("QSpy host name %s cannot be resolved; error 0x%08X\n", hostName, WSAGetLastError()); return false; } memset(&sockAddr, 0, sizeof(sockAddr)); sockAddr.sin_family = AF_INET; memcpy(&sockAddr.sin_addr, server->h_addr, server->h_length); sockAddr.sin_port = htons(port); if (connect(GAME::l_sock, reinterpret_cast(&sockAddr), sizeof(sockAddr)) == SOCKET_ERROR) { printf("Cannot connect to the QSPY server; error 0x%08X\n", WSAGetLastError()); QS_EXIT(); return false; // failure } // Set the socket to non-blocking mode. if (ioctlsocket(GAME::l_sock, FIONBIO, &ioctl_opt) == SOCKET_ERROR) { printf("Socket configuration failed.\n" "Windows socket error 0x%08X.", WSAGetLastError()); QS_EXIT(); return false; // failure } // set up the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO); QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO); QS_FILTER_ON(QS_QF_PUBLISH); QS_FILTER_ON(GAME::PLAYER_TRIGGER); QS_FILTER_ON(GAME::COMMAND_STAT); // return the status of creating the idle thread return (CreateThread(NULL, 1024, &idleThread, NULL, 0, NULL) != NULL) ? true : false; } //............................................................................ void QS::onCleanup(void) { if (GAME::l_sock != INVALID_SOCKET) { closesocket(GAME::l_sock); GAME::l_sock = INVALID_SOCKET; } WSACleanup(); } //............................................................................ void QS::onFlush(void) { uint16_t nBytes = 1000U; uint8_t const *block; while ((block = getBlock(&nBytes)) != static_cast(0)) { send(GAME::l_sock, reinterpret_cast(block), nBytes, 0); nBytes = 1000U; } } //............................................................................ QSTimeCtr QS::onGetTime(void) { return static_cast(clock()); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a uesr command (to be implemented in BSP) void QS::onCommand(uint8_t cmdId, uint32_t param) { (void)cmdId; (void)param; // application-specific record begin QS_BEGIN(GAME::COMMAND_STAT, static_cast(0)) QS_U8(2, cmdId); QS_U32(8, param); QS_END() if (cmdId == 10U) { Q_onAssert("command", 10); } } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP