//**************************************************************************** // Product: DPP example, STM32F4-Discovery board, ThreadX kernel // Last updated for version 5.8.0 // Last updated on 2016-11-30 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // http://www.state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "stm32f4xx.h" // CMSIS-compliant header file for the MCU used #include "stm32f4xx_exti.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_usart.h" // add other drivers if necessary... Q_DEFINE_THIS_FILE // namespace DPP ************************************************************* namespace DPP { // Local-scope objects ------------------------------------------------------- #define LED_GPIO_PORT GPIOD #define LED_GPIO_CLK RCC_AHB1Periph_GPIOD #define LED4_PIN GPIO_Pin_12 #define LED3_PIN GPIO_Pin_13 #define LED5_PIN GPIO_Pin_14 #define LED6_PIN GPIO_Pin_15 #define BTN_GPIO_PORT GPIOA #define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA #define BTN_B1 GPIO_Pin_0 static unsigned l_rnd; // random seed #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif extern "C" { // ISRs used in this project ================================================= } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // Explictily Disable the automatic FPU state preservation as well as // the FPU lazy stacking // FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos)); // Initialize thr port for the LEDs RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE); // GPIO Configuration for the LEDs... GPIO_InitTypeDef GPIO_struct; GPIO_struct.GPIO_Mode = GPIO_Mode_OUT; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_struct.GPIO_Pin = LED3_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED4_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED5_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off GPIO_struct.GPIO_Pin = LED6_PIN; GPIO_Init(LED_GPIO_PORT, &GPIO_struct); LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off // Initialize thr port for Button RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE); // GPIO Configuration for the Button... GPIO_struct.GPIO_Pin = BTN_B1; GPIO_struct.GPIO_Mode = GPIO_Mode_IN; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(BTN_GPIO_PORT, &GPIO_struct); BSP::randomSeed(1234U); if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { // exercise the FPU with some floating point computations float volatile x; x = 3.1415926F; x = x + 2.7182818F; if (stat[0] == 'h') { LED_GPIO_PORT->BSRRL = LED3_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off } if (stat[0] == 'e') { LED_GPIO_PORT->BSRRL = LED5_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED on } (void)n; // unused parameter (in all but Spy build configuration) QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { if (paused) { LED_GPIO_PORT->BSRRL = LED4_PIN; // turn LED on } else { LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED on } } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rnd = seed; } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { static TX_TIMER l_tick_timer; // ThreadX timer to call QF::tickX_() #ifdef Q_SPY // ThreadX thread and thread function for QS output, see NOTE1 static TX_THREAD l_qs_output_thread; static void qs_thread_function(ULONG thread_input); static ULONG qs_thread_stkSto[64]; #endif // QF callbacks ============================================================== void QF::onStartup(void) { // // NOTE: // This application uses the ThreadX timer to periodically call // the QF_tickX_(0) function. Here, only the clock tick rate of 0 // is used, but other timers can be used to call QF_tickX_() for // other clock tick rates, if needed. // // The choice of a ThreadX timer is not the only option. Applications // might choose to call QF_tickX_() directly from timer interrupts // or from active object(s). // Q_ALLEGE(tx_timer_create(&l_tick_timer, // ThreadX timer object "QF", // name of the timer (VOID (*)(ULONG))&QP::QF::tickX_, // expiration function 0U, // expiration function input (tick rate) 1U, // initial ticks 1U, // reschedule ticks TX_AUTO_ACTIVATE) // automatically activate timer == TX_SUCCESS); #ifdef Q_SPY // start a ThreadX timer to perform QS output. See NOTE1... Q_ALLEGE(tx_thread_create(&l_qs_output_thread, // thread control block "QS", // thread name &qs_thread_function, // thread function (ULONG)0, // thread input (unsued) qs_thread_stkSto, // stack start sizeof(qs_thread_stkSto), // stack size in bytes TX_MAX_PRIORITIES - 1, // ThreadX priority (lowest possible) TX_MAX_PRIORITIES - 1, // preemption threshold disabled TX_NO_TIME_SLICE, TX_AUTO_START) == TX_SUCCESS); #endif // Q_SPY } //............................................................................ void QF::onCleanup(void) { } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY //............................................................................ static void qs_thread_function(ULONG /*thread_input*/) { // see NOTE1 for (;;) { // turn the LED6 on an off to visualize the QS activity LED_GPIO_PORT->BSRRL = LED6_PIN; // turn LED on __NOP(); // wait a little to actually see the LED glow __NOP(); __NOP(); __NOP(); LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off if ((USART2->SR & 0x80U) != 0U) { // is TXE empty? uint16_t b; QF_CRIT_STAT_TYPE intStat; QF_CRIT_ENTRY(intStat); b = QP::QS::getByte(); QF_CRIT_EXIT(intStat); if (b != QP::QS_EOD) { // not End-Of-Data? USART2->DR = (b & 0xFFU); // put into the DR register } } // no blocking in this thread; see NOTE1 } } //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[1024]; // buffer for Quantum Spy initBuf(qsBuf, sizeof(qsBuf)); GPIO_InitTypeDef GPIO_struct; USART_InitTypeDef USART_struct; // enable peripheral clock for USART2 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); // GPIOA clock enable RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // GPIOA Configuration: USART2 TX on PA2 GPIO_struct.GPIO_Pin = GPIO_Pin_2; GPIO_struct.GPIO_Mode = GPIO_Mode_AF; GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_struct.GPIO_OType = GPIO_OType_PP; GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOA, &GPIO_struct); // Connect USART2 pins to AF2 GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); // TX = PA2 GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // RX = PA3 USART_struct.USART_BaudRate = 115200; USART_struct.USART_WordLength = USART_WordLength_8b; USART_struct.USART_StopBits = USART_StopBits_1; USART_struct.USART_Parity = USART_Parity_No; USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_struct.USART_Mode = USART_Mode_Tx; USART_Init(USART2, &USART_struct); USART_Cmd(USART2, ENABLE); // enable USART2 // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; QF_CRIT_STAT_TYPE intStat; QF_CRIT_ENTRY(intStat); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... QF_CRIT_EXIT(intStat); while ((USART2->SR & USART_FLAG_TXE) == 0U) { // while TXE not empty } USART2->DR = (b & 0xFFU); // put into the DR register QF_CRIT_ENTRY(intStat); } QF_CRIT_EXIT(intStat); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a uesr command (to be implemented in BSP) void QS::onCommand(uint8_t cmdId, uint32_t param) { (void)cmdId; (void)param; //TBD } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE1: // This application uses the ThreadX thread of the lowest priority to perform // the QS data output to the host. This is not the only choice available, and // other applications might choose to peform the QS output some other way. // // The lowest-priority thread does not block, so in effect, it becomes the // idle loop. This presents no problems to ThreadX - its idle task in the // scheduler does not need to run. //