//**************************************************************************** // DPP example for Windows // Last updated for version 5.7.5 // Last updated on 2016-11-08 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" // "fudge factor" for Windows, see NOTE1 enum { WIN_FUDGE_FACTOR = 10 }; //............................................................................ int main() { static QP::QEvt const *tableQueueSto[N_PHILO*WIN_FUDGE_FACTOR]; static QP::QEvt const *philoQueueSto[N_PHILO][N_PHILO*WIN_FUDGE_FACTOR]; static QF_MPOOL_EL(DPP::TableEvt) smlPoolSto[2*N_PHILO*WIN_FUDGE_FACTOR]; static QP::QSubscrList subscrSto[DPP::MAX_PUB_SIG]; QP::QF::init(); // initialize the framework and the underlying RT kernel DPP::BSP::init(); // initialize the BSP // object dictionaries... QS_OBJ_DICTIONARY(smlPoolSto); QS_OBJ_DICTIONARY(tableQueueSto); QS_OBJ_DICTIONARY(philoQueueSto[0]); QS_OBJ_DICTIONARY(philoQueueSto[1]); QS_OBJ_DICTIONARY(philoQueueSto[2]); QS_OBJ_DICTIONARY(philoQueueSto[3]); QS_OBJ_DICTIONARY(philoQueueSto[4]); QP::QF::psInit(subscrSto, Q_DIM(subscrSto)); // init publish-subscribe // initialize event pools... QP::QF::poolInit(smlPoolSto, sizeof(smlPoolSto), sizeof(smlPoolSto[0])); // start the active objects... for (uint8_t n = 0U; n < N_PHILO; ++n) { DPP::AO_Philo[n]->start((uint8_t)(n + 1U), philoQueueSto[n], Q_DIM(philoQueueSto[n]), (void *)0, 0U); } DPP::AO_Table->start((uint8_t)(N_PHILO + 1U), tableQueueSto, Q_DIM(tableQueueSto), (void *)0, 0U); return QP::QF::run(); // run the QF application } //**************************************************************************** // NOTE1: // Windows is not a deterministic real-time system, which means that the // system can occasionally and unexpectedly "choke and freeze" for a number // of seconds. The designers of Windows have dealt with these sort of issues // by massively oversizing the resources available to the applications. For // example, the default Windows GUI message queues size is 10,000 entries, // which can dynamically grow to an even larger number. Also the stacks of // Win32 threads can dynamically grow to several megabytes. // // In contrast, the event queues, event pools, and stack size inside the // real-time embedded (RTE) systems can be (and must be) much smaller, // because you typically can put an upper bound on the real-time behavior // and the resulting delays. // // To be able to run the unmodified applications designed originally for // RTE systems on Windows, and to reduce the odds of resource shortages in // this case, the generous WIN_FUDGE_FACTOR is used to oversize the // event queues and event pools. //