//**************************************************************************** // Product: DPP on AT91SAM7S-EK, preemptive QK kernel, IAR-ARM toolset // Last Updated for Version: 5.5.0 // Date of the Last Update: 2015-09-28 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // http://www.state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "AT91SAM7S64.h" // Atmel AT91SAM7S64 MCU #pragma diag_suppress=Ta021 // call __iar_disable_interrupt from __ramfunc #pragma diag_suppress=Ta022 // possible ROM access from __ramfunc #pragma diag_suppress=Ta023 // call to non __ramfunc from __ramfunc // extern "C" functions in C ================================================= extern "C" { //............................................................................ __ramfunc void BSP_irq(void) { IntVector vect = (IntVector)AT91C_BASE_AIC->AIC_IVR; // read the IVR AT91C_BASE_AIC->AIC_IVR = (AT91_REG)vect; // write AIC_IVR if protected QF_INT_ENABLE(); // allow nesting interrupts (*vect)(); // call the IRQ ISR via the pointer to function QF_INT_DISABLE(); // disable interrups for the exit sequence AT91C_BASE_AIC->AIC_EOICR = 0; // write AIC_EOICR to clear interrupt } } // extern "C" namespace DPP { Q_DEFINE_THIS_FILE // Local objects ------------------------------------------------------------- typedef void (*IntVector)(void); // IntVector pointer-to-function uint32_t const l_led[] = { (1U << 0), // LED D1 on AT91SAM7S-EK (1U << 1), // LED D2 on AT91SAM7S-EK (1U << 2), // LED D3 on AT91SAM7S-EK (1U << 3) // LED D4 on AT91SAM7S-EK }; #define LED_ON(num_) (AT91C_BASE_PIOA->PIO_CODR = DPP::l_led[num_]) #define LED_OFF(num_) (AT91C_BASE_PIOA->PIO_SODR = DPP::l_led[num_]) uint32_t const l_btn[] = { (1U << 19), // BTN P1 on AT91SAM7S-EK (1U << 20), // BTN P2 on AT91SAM7S-EK (1U << 14), // BTN P3 on AT91SAM7S-EK (1U << 15) // BTN P4 on AT91SAM7S-EK }; static unsigned l_rnd; // random seed #ifdef Q_SPY static uint8_t const l_ISR_tick = 0U; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif // ISRs ====================================================================== __ramfunc static void ISR_tick(void) { uint32_t volatile tmp; // clear the interrupt source tmp = AT91C_BASE_PITC->PITC_PIVR; QP::QF::TICK_X(0U, &l_ISR_tick); // process all time events at tick rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; current = ~AT91C_BASE_PIOA->PIO_PDSR; // read PIOA with state of Buttons tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & l_btn[0]) != 0U) { // debounced BTN_P1 state changed? if ((buttons.depressed & l_btn[0]) != 0U) { // is BTN_P1 depressed? static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_ISR_tick); } else { // the button is released static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_ISR_tick); } } } //............................................................................ __ramfunc static void ISR_spur(void) { } // BSP functions ============================================================= void BSP_init(void) { // When using the JTAG debugger the AIC might not be initialised // to the correct default state. This line ensures that AIC does not // mask all interrupts at the start. // AT91C_BASE_AIC->AIC_EOICR = 0U; // enable peripheral clock for PIOA AT91C_BASE_PMC->PMC_PCER = (1U << AT91C_ID_PIOA); // initialize the LEDs... uint32_t i; for (i = 0; i < Q_DIM(l_led); ++i) { AT91C_BASE_PIOA->PIO_PER = l_led[i]; // enable pin AT91C_BASE_PIOA->PIO_OER = l_led[i]; // configure as output pin LED_OFF(i); // extinguish the LED } // initialize the Buttons... for (i = 0; i < Q_DIM(l_btn); ++i) { AT91C_BASE_PIOA->PIO_ODR = l_btn[i]; // disable output (input pin) AT91C_BASE_PIOA->PIO_PER = l_btn[i]; // enable pin } // configure Advanced Interrupt Controller (AIC) of AT91... AT91C_BASE_AIC->AIC_IDCR = ~0; // disable all interrupts AT91C_BASE_AIC->AIC_ICCR = ~0; // clear all interrupts for (i = 0; i < 8; ++i) { AT91C_BASE_AIC->AIC_EOICR = 0; // write AIC_EOICR 8 times } // set the desired ticking rate for the PIT... i = (get_MCK_FREQ() / 16U / BSP_TICKS_PER_SEC) - 1U; AT91C_BASE_PITC->PITC_PIMR = (AT91C_PITC_PITEN | AT91C_PITC_PITIEN | i); BSP_randomSeed(1234U); // seed the random number generator if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_ISR_tick); } //............................................................................ void BSP_terminate(int16_t result) { (void)result; } //............................................................................ void BSP_displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'h') { LED_ON(0); // turn LED on } else { LED_OFF(0); // turn LED off } if (stat[0] == 'e') { LED_ON(1); // turn LED on } else { LED_OFF(1); // turn LED off } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_displayPaused(uint8_t paused) { if (paused != (uint8_t)0) { LED_ON(2); // turn LED on } else { LED_OFF(2); // turn LED off } } //............................................................................ uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // l_rnd = l_rnd * (3U*7U*11U*13U*23U); return l_rnd >> 8; } //............................................................................ void BSP_randomSeed(uint32_t seed) { l_rnd = seed; } } // namespace DPP namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // hook the exception handlers from the QF port... *(uint32_t volatile *)0x24 = (uint32_t)&QF_undef; *(uint32_t volatile *)0x28 = (uint32_t)&QF_swi; *(uint32_t volatile *)0x2C = (uint32_t)&QF_pAbort; *(uint32_t volatile *)0x30 = (uint32_t)&QF_dAbort; *(uint32_t volatile *)0x34 = (uint32_t)&QF_reserved; *(uint32_t volatile *)0x38 = (uint32_t)&QK_irq; *(uint32_t volatile *)0x3C = (uint32_t)0; // unimplemented! AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (uint32_t)&DPP::ISR_tick; AT91C_BASE_AIC->AIC_SPU = (uint32_t)&DPP::ISR_spur; // spurious IRQ AT91C_BASE_AIC->AIC_SMR[AT91C_ID_SYS] = (AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | AT91C_AIC_PRIOR_LOWEST); AT91C_BASE_AIC->AIC_ICCR = (1 << AT91C_ID_SYS); AT91C_BASE_AIC->AIC_IECR = (1 << AT91C_ID_SYS); } //............................................................................ void QF_onCleanup(void) { } //............................................................................ __ramfunc void QK::onIdle(void) { // toggle first LED on and off, see NOTE01 QF_INT_DISABLE(); LED_ON(3); // turn LED on LED_OFF(3); // turn LED off QF_INT_ENABLE(); #ifdef Q_SPY // use the idle cycles for QS transmission... if ((AT91C_BASE_DBGU->DBGU_CSR & AT91C_US_TXBUFE) != 0) { // not busy? uint16_t nBytes = 0xFFFFU; // get all available bytes uint8_t const *block; QF_INT_DISABLE(); if ((block = QS::getBlock(&nBytes)) != (uint8_t *)0) { // new block? AT91C_BASE_DBGU->DBGU_TPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TCR = (uint32_t)nBytes; nBytes = 0xFFFFU; // get all available bytes if ((block = QS::getBlock(&nBytes)) != (uint8_t *)0) {//another? AT91C_BASE_DBGU->DBGU_TNPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TNCR = (uint32_t)nBytes; } } QF_INT_ENABLE(); } #elif defined NDEBUG // only if not debugging (idle mode hinders debugging) AT91C_BASE_PMC->PMC_SCDR = 1;// Power-Management: disable the CPU clock // NOTE: an interrupt starts the CPU clock again #endif } //............................................................................ extern "C" void Q_onAssert(char const * const module, int loc) { QF_INT_DISABLE(); // disable all interrupts // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, 10000U); // report assertion to QS // trip the Watchdog to reset the system AT91C_BASE_WDTC->WDTC_WDCR = (0xA5U << 24) | AT91C_WDTC_WDRSTT; // hang in here until the reset occurrs for (;;) { } } // QS callbacks ============================================================== #ifdef Q_SPY uint32_t l_timeOverflow; #define QS_BUF_SIZE (2*1024) #define BAUD_RATE 115200U bool QS::onStartup(void const *arg) { static uint8_t qsBuf[QS_BUF_SIZE]; // buffer for Quantum Spy AT91PS_DBGU pDBGU = AT91C_BASE_DBGU; AT91PS_TC pTC0 = AT91C_BASE_TC0;// TC0 used for timestamp generation uint32_t volatile tmp; initBuf(qsBuf, sizeof(qsBuf)); // configure the Debug UART for QSPY output ... AT91C_BASE_PIOA->PIO_PDR = AT91C_PA10_DTXD; // configure pin as DTXD pDBGU->DBGU_CR = AT91C_US_TXEN; // enable only transmitter pDBGU->DBGU_IDR = ~0U; // disable all DBGU interrupts pDBGU->DBGU_MR = AT91C_US_PAR_NONE; // no parity bit pDBGU->DBGU_BRGR = ((get_MCK_FREQ()/BAUD_RATE + 8) >> 4); // baud rate pDBGU->DBGU_PTCR = AT91C_PDC_TXTEN; // enable PDC transfer from DBGU // configure Timer/Counter 0 for time measurements ... AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); // enable clock to TC0 pTC0->TC_CCR = AT91C_TC_CLKDIS; // TC_CCR: disable Clock Counter pTC0->TC_IDR = ~0; // TC_IDR: disable all timer interrupts tmp = pTC0->TC_SR; // TC_SR: read (void)tmp; // avoid the compiler warning about the unused variable // CPCTRG, MCK/32 clock... pTC0->TC_CMR = (AT91C_TC_CPCTRG | AT91C_TC_CLKS_TIMER_DIV3_CLOCK); pTC0->TC_CCR = AT91C_TC_CLKEN; // TC_CCR: enable Clock Counter pTC0->TC_CCR = AT91C_TC_SWTRG; // TC_CCR: start counting // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); return true; // indicate successfull QS initialization } //............................................................................ void QS::onCleanup(void) { } //............................................................................ void QS::onFlush(void) { uint16_t nBytes = 0xFFFFU; // get all available bytes uint8_t const *block; while ((AT91C_BASE_DBGU->DBGU_CSR & AT91C_US_TXBUFE) == 0) { // busy? } if ((block = getBlock(&nBytes)) != (uint8_t *)0) { AT91C_BASE_DBGU->DBGU_TPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TCR = (uint32_t)nBytes; nBytes = 0xFFFFU; // get all available bytes if ((block = getBlock(&nBytes)) != (uint8_t *)0) { AT91C_BASE_DBGU->DBGU_TNPR = (uint32_t)block; AT91C_BASE_DBGU->DBGU_TNCR = (uint32_t)nBytes; } } } //............................................................................ // NOTE: getTime is invoked within a critical section (inetrrupts disabled) __ramfunc uint32_t QS::onGetTime(void) { AT91PS_TC pTC0 = AT91C_BASE_TC0; // TC0 used for timestamp generation uint32_t now = pTC0->TC_CV; // get the counter value // did the timer overflow 0xFFFF? if ((pTC0->TC_SR & AT91C_TC_COVFS) != 0) { l_timeOverflow += (uint32_t)0x10000; // account for the overflow } return l_timeOverflow + now; } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QP::QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a uesr command (to be implemented in BSP) void QP::QS::onCommand(uint8_t cmdId, uint32_t param) { (void)cmdId; (void)param; //TBD } #endif // Q_SPY //---------------------------------------------------------------------------- } // namespace QP //**************************************************************************** // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //