////////////////////////////////////////////////////////////////////////////// // Product: "Dining Philosophers Problem" example, Vanilla kernel // Last Updated for Version: 4.4.00 // Date of the Last Update: Apr 19, 2012 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Quantum Leaps Web sites: http://www.quantum-leaps.com // http://www.state-machine.com // e-mail: info@quantum-leaps.com ////////////////////////////////////////////////////////////////////////////// #include "qp_port.h" #include "dpp.h" #include "bsp.h" #include "lm3s_cmsis.h" #include "display96x16x1.h" Q_DEFINE_THIS_FILE enum ISR_Priorities { // ISR priorities starting from the highest urgency GPIOPORTA_PRIO, SYSTICK_PRIO, // ... }; #define UART_FR_TXFE 0x00000080 // Local-scope objects ------------------------------------------------------- static uint32_t l_delay = 0UL; // limit for the loop counter in busyDelay() #define PUSH_BUTTON (1 << 4) #define USER_LED (1 << 5) #ifdef Q_SPY QSTimeCtr QS_tickTime_; QSTimeCtr QS_tickPeriod_; static uint8_t l_SysTick_Handler; #define UART_BAUD_RATE 115200 #define UART_TXFIFO_DEPTH 16 enum AppRecords { // application-specific trace records PHILO_STAT = QS_USER }; #endif //............................................................................ extern "C" void SysTick_Handler(void) __attribute__((__interrupt__)); extern "C" void SysTick_Handler(void) { #ifdef Q_SPY uint32_t dummy = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover #endif QF::TICK(&l_SysTick_Handler); // process all armed time events } //............................................................................ void BSP_init(void) { // set the system clock as specified in lm3s_config.h (20MHz from PLL) SystemInit(); // enable clock to the peripherals used by the application SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); // enable clock to GPIOA & C __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure the LED and push button GPIOC->DIR |= USER_LED; // set direction: output GPIOC->DEN |= USER_LED; // digital enable GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off GPIOC->DIR &= ~PUSH_BUTTON; // set direction: input GPIOC->DEN |= PUSH_BUTTON; // digital enable Display96x16x1Init(1); // initialize the OLED display Display96x16x1StringDraw("Dining Philos", 0, 0); Display96x16x1StringDraw("0 ,1 ,2 ,3 ,4", 0, 1); if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); } //............................................................................ void BSP_displyPhilStat(uint8_t n, char const *stat) { char str[2]; str[0] = stat[0]; str[1] = '\0'; Display96x16x1StringDraw(str, (3*6*n + 6), 1); QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP_driveLED(uint8_t state) { if (state != 0) { GPIOC->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on } else { GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off } } //............................................................................ void BSP_busyDelay(void) { uint32_t volatile i = l_delay; while (i-- > 0UL) { // busy-wait loop } } //............................................................................ void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC); // set priorities of all interrupts in the system... NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO); NVIC_EnableIRQ(GPIOPortA_IRQn); } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QF::onIdle(void) { // entered with interrupts LOCKED, see NOTE01 // toggle the User LED on and then off, see NOTE02 GPIOC->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off #ifdef Q_SPY QF_INT_ENABLE(); if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept uint8_t const *block; QF_INT_DISABLE(); block = QS::getBlock(&fifo); // try to get next block to transmit QF_INT_ENABLE(); while (fifo-- != 0) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // put the CPU and peripherals to the low-power mode // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. __WFI(); // Wait-For-Interrupt QF_INT_ENABLE(); #else QF_INT_ENABLE(); #endif } //............................................................................ void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) { (void)file; // avoid compiler warning (void)line; // avoid compiler warning QF_INT_DISABLE(); // make sure that all interrupts are disabled for (;;) { // NOTE: replace the loop with reset for final version } } //............................................................................ // error routine that is called if the CMSIS library encounters an error extern "C" void assert_failed(char const *file, int line) { Q_onAssert(file, line); } //---------------------------------------------------------------------------- #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[6*256]; // buffer for Quantum Spy uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); // enable the peripherals used by the UART0 SYSCTL->RCGC1 |= (1 << 0); // enable clock to UART0 SYSCTL->RCGC2 |= (1 << 0); // enable clock to GPIOA __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure UART0 pins for UART operation tmp = (1 << 0) | (1 << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2; UART0->IBRD = tmp / 64; UART0->FBRD = tmp % 64; UART0->LCRH = 0x60; // configure 8-N-1 operation UART0->LCRH |= 0x10; UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9); QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC; QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_ALL_RECORDS); // QS_FILTER_OFF(QS_QEP_STATE_EMPTY); // QS_FILTER_OFF(QS_QEP_STATE_ENTRY); // QS_FILTER_OFF(QS_QEP_STATE_EXIT); // QS_FILTER_OFF(QS_QEP_STATE_INIT); // QS_FILTER_OFF(QS_QEP_INIT_TRAN); // QS_FILTER_OFF(QS_QEP_INTERN_TRAN); // QS_FILTER_OFF(QS_QEP_TRAN); // QS_FILTER_OFF(QS_QEP_IGNORED); QS_FILTER_OFF(QS_QF_ACTIVE_ADD); QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE); QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO); QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO); QS_FILTER_OFF(QS_QF_ACTIVE_GET); QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST); QS_FILTER_OFF(QS_QF_EQUEUE_INIT); QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO); QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO); QS_FILTER_OFF(QS_QF_EQUEUE_GET); QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST); QS_FILTER_OFF(QS_QF_MPOOL_INIT); QS_FILTER_OFF(QS_QF_MPOOL_GET); QS_FILTER_OFF(QS_QF_MPOOL_PUT); QS_FILTER_OFF(QS_QF_PUBLISH); QS_FILTER_OFF(QS_QF_NEW); QS_FILTER_OFF(QS_QF_GC_ATTEMPT); QS_FILTER_OFF(QS_QF_GC); // QS_FILTER_OFF(QS_QF_TICK); QS_FILTER_OFF(QS_QF_TIMEEVT_ARM); QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_REARM); QS_FILTER_OFF(QS_QF_TIMEEVT_POST); QS_FILTER_OFF(QS_QF_CRIT_ENTRY); QS_FILTER_OFF(QS_QF_CRIT_EXIT); QS_FILTER_OFF(QS_QF_ISR_ENTRY); QS_FILTER_OFF(QS_QF_ISR_EXIT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // flag not set? return QS_tickTime_ - (QSTimeCtr)SysTick->VAL; } else { // the rollover occured, but the SysTick_ISR did not run yet return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL; } } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) { // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0) { } while (fifo-- != 0) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth } } #endif // Q_SPY //---------------------------------------------------------------------------- ////////////////////////////////////////////////////////////////////////////// // NOTE01: // The QF_onIdle() callback is called with interrupts locked, because the // determination of the idle condition might change by any interrupt posting // an event. QF::onIdle() must internally unlock interrupts, ideally // atomically with putting the CPU to the power-saving mode. // // NOTE02: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //