////////////////////////////////////////////////////////////////////////////// // Product: BSP for DPP application with lwIP on EV-LM3S9665 board, QK kernel // Last Updated for Version: 4.5.00 // Date of the Last Update: May 20, 2012 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Quantum Leaps Web sites: http://www.quantum-leaps.com // http://www.state-machine.com // e-mail: info@quantum-leaps.com ////////////////////////////////////////////////////////////////////////////// #include "qp_port.h" // QP port header file #include "dpp.h" // application events and active objects #include "bsp.h" // Board Support Package header file #include "lm3s_cmsis.h" Q_DEFINE_THIS_FILE #define USER_LED (1U << 0) #define USER_BTN (1U << 1) #define ETH0_LED (1U << 3) #define ETH1_LED (1U << 2) static uint32_t l_nTicks; enum ISR_Priorities { // ISR priorities starting from the highest urgency SYSTICK_PRIO, ETHERNET_PRIO, // ... }; #ifdef Q_SPY QSTimeCtr QS_tickTime_; QSTimeCtr QS_tickPeriod_; static uint8_t l_SysTick_Handler; #define UART_BAUD_RATE 115200U #define UART_TXFIFO_DEPTH 16U #define UART_FR_TXFE (1U << 7) #endif //............................................................................ extern "C" void SysTick_Handler(void) { static uint32_t btn_debounced = 0U; static uint8_t debounce_state = 0U; uint32_t volatile tmp; QK_ISR_ENTRY(); // inform QK about ISR entry ++l_nTicks; // count the number of clock ticks #ifdef Q_SPY tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover #endif QF::TICK(&l_SysTick_Handler); // process all armed time events tmp = GPIOF->DATA_Bits[USER_BTN]; // read the User Button switch (debounce_state) { case 0: if (tmp != btn_debounced) { debounce_state = 1U; // transition to the next state } break; case 1: if (tmp != btn_debounced) { debounce_state = 2U; // transition to the next state } else { debounce_state = 0U; // transition back to state 0 } break; case 2: if (tmp != btn_debounced) { debounce_state = 3U; // transition to the next state } else { debounce_state = 0U; // transition back to state 0 } break; case 3: if (tmp != btn_debounced) { btn_debounced = tmp; // save the debounced button value if (tmp == 0U) { // is the button depressed? static QEvt const bd = { BTN_DOWN_SIG, 0U, 0U }; QF::PUBLISH(&bd, &l_SysTick_Handler); } else { static QEvt const bu = { BTN_UP_SIG, 0U, 0U }; QF::PUBLISH(&bu, &l_SysTick_Handler); } } debounce_state = 0U; // transition back to state 0 break; } QK_ISR_EXIT(); // inform QK about ISR exit } //............................................................................ void BSP_init(void) { // set the system clock as specified in lm3s_config.h (20MHz from PLL) SystemInit(); SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF (User and Eth LEDs) __NOP(); __NOP(); // configure the pin driving the Ethernet LED GPIOF->DIR &= ~(ETH0_LED | ETH1_LED); // set direction: hardware GPIOF->AFSEL |= (ETH0_LED | ETH1_LED); GPIOF->DR2R |= (ETH0_LED | ETH1_LED); GPIOF->ODR &= ~(ETH0_LED | ETH1_LED); GPIOF->PUR |= (ETH0_LED | ETH1_LED); GPIOF->PDR &= ~(ETH0_LED | ETH1_LED); GPIOF->DEN |= (ETH0_LED | ETH1_LED); GPIOF->AMSEL &= ~(ETH0_LED | ETH1_LED); // configure the pin driving the User LED GPIOF->DIR |= USER_LED; // set direction: output GPIOF->DR2R |= USER_LED; GPIOF->DEN |= USER_LED; GPIOF->AMSEL &= ~USER_LED; GPIOF->DATA_Bits[USER_LED] = 0U; // turn the LED off // configure the pin connected to the Buttons GPIOF->DIR &= ~USER_BTN; // set direction: input GPIOF->DR2R |= USER_BTN; GPIOF->ODR &= ~USER_BTN; GPIOF->PUR |= USER_BTN; GPIOF->PDR &= ~USER_BTN; GPIOF->DEN |= USER_BTN; GPIOF->AMSEL &= ~USER_BTN; if (!QS_INIT((void *)0)) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); } //............................................................................ void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC); // set priorities of all interrupts in the system... NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); NVIC_SetPriority(Ethernet_IRQn, ETHERNET_PRIO); NVIC_EnableIRQ(Ethernet_IRQn); // enable the Ethernet Interrupt } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QK::onIdle(void) { // toggle the User LED on and then off, see NOTE01 QF_INT_DISABLE(); GPIOF->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on GPIOF->DATA_Bits[USER_LED] = 0U; // turn the User LED off QF_INT_ENABLE(); #ifdef Q_SPY if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept uint8_t const *block; QF_INT_DISABLE(); block = QS::getBlock(&fifo); // try to get next block to transmit QF_INT_ENABLE(); while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular MCU. // __WFI(); // Wait-For-Interrupt #endif } //............................................................................ void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) { (void)file; // avoid compiler warning (void)line; // avoid compiler warning QF_INT_DISABLE(); // make sure that all interrupts are disabled for (;;) { // NOTE: replace the loop with reset for final version } } //............................................................................ // sys_now() is used in the lwIP stack extern "C" uint32_t sys_now(void) { return l_nTicks * (1000U / BSP_TICKS_PER_SEC); } //---------------------------------------------------------------------------- #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[6*256]; // buffer for Quantum Spy uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); // enable the peripherals used by the UART0 SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0 SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure UART0 pins for UART operation tmp = (1U << 0) | (1U << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; GPIOA->AMSEL &= ~tmp; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemFrequency * 8U) / UART_BAUD_RATE) + 1U) / 2U; UART0->IBRD = tmp / 64U; UART0->FBRD = tmp % 64U; UART0->LCRH = 0x60U; // configure 8-bit operation UART0->LCRH |= 0x10U; // enable FIFOs UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9); QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC; QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_ALL_RECORDS); // QS_FILTER_OFF(QS_QEP_STATE_EMPTY); // QS_FILTER_OFF(QS_QEP_STATE_ENTRY); // QS_FILTER_OFF(QS_QEP_STATE_EXIT); // QS_FILTER_OFF(QS_QEP_STATE_INIT); // QS_FILTER_OFF(QS_QEP_INIT_TRAN); // QS_FILTER_OFF(QS_QEP_INTERN_TRAN); // QS_FILTER_OFF(QS_QEP_TRAN); // QS_FILTER_OFF(QS_QEP_IGNORED); QS_FILTER_OFF(QS_QF_ACTIVE_ADD); QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE); QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO); QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO); QS_FILTER_OFF(QS_QF_ACTIVE_GET); QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST); QS_FILTER_OFF(QS_QF_EQUEUE_INIT); QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO); QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO); QS_FILTER_OFF(QS_QF_EQUEUE_GET); QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST); QS_FILTER_OFF(QS_QF_MPOOL_INIT); QS_FILTER_OFF(QS_QF_MPOOL_GET); QS_FILTER_OFF(QS_QF_MPOOL_PUT); QS_FILTER_OFF(QS_QF_PUBLISH); QS_FILTER_OFF(QS_QF_NEW); QS_FILTER_OFF(QS_QF_GC_ATTEMPT); QS_FILTER_OFF(QS_QF_GC); // QS_FILTER_OFF(QS_QF_TICK); QS_FILTER_OFF(QS_QF_TIMEEVT_ARM); QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_REARM); QS_FILTER_OFF(QS_QF_TIMEEVT_POST); QS_FILTER_OFF(QS_QF_CRIT_ENTRY); QS_FILTER_OFF(QS_QF_CRIT_EXIT); QS_FILTER_OFF(QS_QF_ISR_ENTRY); QS_FILTER_OFF(QS_QF_ISR_EXIT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // flag not set? return QS_tickTime_ - (QSTimeCtr)SysTick->VAL; } else { // the rollover occured, but the SysTick_ISR did not run yet return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL; } } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) { // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0) { } while (fifo-- != 0U) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth } } #endif // Q_SPY //--------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////// // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //