////////////////////////////////////////////////////////////////////////////// // Model: dpp.qm // File: ./table.cpp // // This file has been generated automatically by QP Modeler (QM). // DO NOT EDIT THIS FILE MANUALLY. // // Please visit www.state-machine.com/qm for more information. ////////////////////////////////////////////////////////////////////////////// #include "qp_port.h" #include "dpp.h" #include "bsp.h" namespace DPP { Q_DEFINE_THIS_FILE // Active object class ------------------------------------------------------- // @(/2/1) ................................................................... class Table : public QP::QActive { private: uint8_t m_fork[N_PHILO]; bool m_isHungry[N_PHILO]; public: Table(); protected: static QP::QState initial(Table * const me, QP::QEvt const * const e); static QP::QState active(Table * const me, QP::QEvt const * const e); static QP::QState serving(Table * const me, QP::QEvt const * const e); static QP::QState paused(Table * const me, QP::QEvt const * const e); }; // helper function to provide the RIGHT neighbour of a Philo[n] inline uint8_t RIGHT(uint8_t const n) { return static_cast((n + (N_PHILO - 1U)) % N_PHILO); } // helper function to provide the LEFT neighbour of a Philo[n] inline uint8_t LEFT(uint8_t const n) { return static_cast((n + 1U) % N_PHILO); } static uint8_t const FREE = static_cast(0); static uint8_t const USED = static_cast(1); static char_t const * const THINKING = &"thinking"[0]; static char_t const * const HUNGRY = &"hungry "[0]; static char_t const * const EATING = &"eating "[0]; // Local objects ------------------------------------------------------------- static Table l_table; // the single instance of the Table active object // Global-scope objects ------------------------------------------------------ QP::QActive * const AO_Table = &l_table; // "opaque" AO pointer //............................................................................ // @(/2/1) ................................................................... // @(/2/1/2) ................................................................. Table::Table() : QActive(Q_STATE_CAST(&Table::initial)) { for (uint8_t n = 0U; n < N_PHILO; ++n) { m_fork[n] = FREE; m_isHungry[n] = false; } } // @(/2/1/3) ................................................................. // @(/2/1/3/0) QP::QState Table::initial(Table * const me, QP::QEvt const * const e) { (void)e; // suppress the compiler warning about unused parameter QS_OBJ_DICTIONARY(&l_table); QS_FUN_DICTIONARY(&QP::QHsm::top); QS_FUN_DICTIONARY(&Table::initial); QS_FUN_DICTIONARY(&Table::active); QS_FUN_DICTIONARY(&Table::serving); QS_FUN_DICTIONARY(&Table::paused); QS_SIG_DICTIONARY(DONE_SIG, (void *)0); // global signals QS_SIG_DICTIONARY(EAT_SIG, (void *)0); QS_SIG_DICTIONARY(PAUSE_SIG, (void *)0); QS_SIG_DICTIONARY(TERMINATE_SIG, (void *)0); QS_SIG_DICTIONARY(HUNGRY_SIG, me); // signal just for Table me->subscribe(DONE_SIG); me->subscribe(PAUSE_SIG); me->subscribe(TERMINATE_SIG); for (uint8_t n = 0U; n < N_PHILO; ++n) { me->m_fork[n] = FREE; me->m_isHungry[n] = false; BSP_displayPhilStat(n, THINKING); } return Q_TRAN(&Table::serving); } // @(/2/1/3/1) ............................................................... QP::QState Table::active(Table * const me, QP::QEvt const * const e) { QP::QState status; switch (e->sig) { // @(/2/1/3/1/0) case TERMINATE_SIG: { BSP_terminate(0); status = Q_HANDLED(); break; } // @(/2/1/3/1/1) case EAT_SIG: { Q_ERROR(); status = Q_HANDLED(); break; } default: { status = Q_SUPER(&QHsm::top); break; } } return status; } // @(/2/1/3/1/2) ............................................................. QP::QState Table::serving(Table * const me, QP::QEvt const * const e) { QP::QState status; switch (e->sig) { // @(/2/1/3/1/2) case Q_ENTRY_SIG: { for (uint8_t n = 0U; n < N_PHILO; ++n) { // give permissions to eat... if (me->m_isHungry[n] && (me->m_fork[LEFT(n)] == FREE) && (me->m_fork[n] == FREE)) { me->m_fork[LEFT(n)] = USED; me->m_fork[n] = USED; TableEvt *te = Q_NEW(TableEvt, EAT_SIG); te->philoNum = n; QP::QF::PUBLISH(te, me); me->m_isHungry[n] = false; BSP_displayPhilStat(n, EATING); } } status = Q_HANDLED(); break; } // @(/2/1/3/1/2/0) case HUNGRY_SIG: { uint8_t n = Q_EVT_CAST(TableEvt)->philoNum; // phil ID must be in range and he must be not hungry Q_ASSERT((n < N_PHILO) && (!me->m_isHungry[n])); BSP_displayPhilStat(n, HUNGRY); uint8_t m = LEFT(n); // @(/2/1/3/1/2/0/0) if ((me->m_fork[m] == FREE) && (me->m_fork[n] == FREE)) { me->m_fork[m] = USED; me->m_fork[n] = USED; TableEvt *pe = Q_NEW(TableEvt, EAT_SIG); pe->philoNum = n; QP::QF::PUBLISH(pe, me); BSP_displayPhilStat(n, EATING); status = Q_HANDLED(); } // @(/2/1/3/1/2/0/1) else { me->m_isHungry[n] = true; status = Q_HANDLED(); } break; } // @(/2/1/3/1/2/1) case DONE_SIG: { uint8_t n = Q_EVT_CAST(TableEvt)->philoNum; // phil ID must be in range and he must be not hungry Q_ASSERT((n < N_PHILO) && (!me->m_isHungry[n])); BSP_displayPhilStat(n, THINKING); uint8_t m = LEFT(n); // both forks of Phil[n] must be used Q_ASSERT((me->m_fork[n] == USED) && (me->m_fork[m] == USED)); me->m_fork[m] = FREE; me->m_fork[n] = FREE; m = RIGHT(n); // check the right neighbor if (me->m_isHungry[m] && (me->m_fork[m] == FREE)) { me->m_fork[n] = USED; me->m_fork[m] = USED; me->m_isHungry[m] = false; TableEvt *pe = Q_NEW(TableEvt, EAT_SIG); pe->philoNum = m; QP::QF::PUBLISH(pe, me); BSP_displayPhilStat(m, EATING); } m = LEFT(n); // check the left neighbor n = LEFT(m); // left fork of the left neighbor if (me->m_isHungry[m] && (me->m_fork[n] == FREE)) { me->m_fork[m] = USED; me->m_fork[n] = USED; me->m_isHungry[m] = false; TableEvt *pe = Q_NEW(TableEvt, EAT_SIG); pe->philoNum = m; QP::QF::PUBLISH(pe, me); BSP_displayPhilStat(m, EATING); } status = Q_HANDLED(); break; } // @(/2/1/3/1/2/2) case EAT_SIG: { Q_ERROR(); status = Q_HANDLED(); break; } // @(/2/1/3/1/2/3) case PAUSE_SIG: { status = Q_TRAN(&Table::paused); break; } default: { status = Q_SUPER(&Table::active); break; } } return status; } // @(/2/1/3/1/3) ............................................................. QP::QState Table::paused(Table * const me, QP::QEvt const * const e) { QP::QState status; switch (e->sig) { // @(/2/1/3/1/3) case Q_ENTRY_SIG: { BSP_displayPaused(1U); status = Q_HANDLED(); break; } // @(/2/1/3/1/3) case Q_EXIT_SIG: { BSP_displayPaused(0U); status = Q_HANDLED(); break; } // @(/2/1/3/1/3/0) case PAUSE_SIG: { status = Q_TRAN(&Table::serving); break; } // @(/2/1/3/1/3/1) case HUNGRY_SIG: { uint8_t n = Q_EVT_CAST(TableEvt)->philoNum; // philo ID must be in range and he must be not hungry Q_ASSERT((n < N_PHILO) && (!me->m_isHungry[n])); me->m_isHungry[n] = true; BSP_displayPhilStat(n, HUNGRY); status = Q_HANDLED(); break; } // @(/2/1/3/1/3/2) case DONE_SIG: { uint8_t n = Q_EVT_CAST(TableEvt)->philoNum; // phil ID must be in range and he must be not hungry Q_ASSERT((n < N_PHILO) && (!me->m_isHungry[n])); BSP_displayPhilStat(n, THINKING); uint8_t m = LEFT(n); /* both forks of Phil[n] must be used */ Q_ASSERT((me->m_fork[n] == USED) && (me->m_fork[m] == USED)); me->m_fork[m] = FREE; me->m_fork[n] = FREE; status = Q_HANDLED(); break; } default: { status = Q_SUPER(&Table::active); break; } } return status; } } // namespace DPP