////////////////////////////////////////////////////////////////////////////// // Product: "Fly 'n' Shoot" game example with cooperative "Vanilla" kernel // Last Updated for Version: 4.5.00 // Date of the Last Update: May 20, 2012 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // Quantum Leaps Web sites: http://www.quantum-leaps.com // http://www.state-machine.com // e-mail: info@quantum-leaps.com ////////////////////////////////////////////////////////////////////////////// #include "qp_port.h" #include "game.h" #include "bsp.h" #include "lm3s_cmsis.h" #include "display96x16x1.h" Q_DEFINE_THIS_FILE enum ISR_Priorities { // ISR priorities starting from the highest urgency GPIOPORTA_PRIO, ADCSEQ3_PRIO, SYSTICK_PRIO, // ... }; #define ADC_TRIGGER_TIMER 0x00000005 #define ADC_CTL_IE 0x00000040 #define ADC_CTL_END 0x00000020 #define ADC_CTL_CH0 0x00000000 #define ADC_SSFSTAT0_EMPTY 0x00000100 #define UART_FR_TXFE 0x00000080 // Local-scope objects ------------------------------------------------------- #define PUSH_BUTTON (1 << 4) #define USER_LED (1 << 5) #ifdef Q_SPY QSTimeCtr QS_tickTime_; QSTimeCtr QS_tickPeriod_; uint8_t l_SysTick_Handler; uint8_t l_ADCSeq3_IRQHandler; #define UART_BAUD_RATE 115200 #define UART_TXFIFO_DEPTH 16 #endif //............................................................................ extern "C" void SysTick_Handler(void) __attribute__((__interrupt__)); extern "C" void SysTick_Handler(void) { #ifdef Q_SPY uint32_t dummy = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover #endif QF::TICK(&l_SysTick_Handler); // process all armed time events static QEvt const tickEvt = { TIME_TICK_SIG, 0 }; QF::PUBLISH(&tickEvt, &l_SysTick_Handler); // publish to all subscribers } //............................................................................ extern "C" void ADCSeq3_IRQHandler(void) __attribute__((__interrupt__)); extern "C" void ADCSeq3_IRQHandler(void) { static uint32_t adcLPS = 0; // Low-Pass-Filtered ADC reading static uint32_t wheel = 0; // the last wheel position static uint32_t btn_debounced = 0; static uint8_t debounce_state = 0; uint32_t tmp; ADC->ISC = (1 << 3); // clear the ADCSeq3 interrupt // the ADC Sequence 3 FIFO must have a sample Q_ASSERT((ADC->SSFSTAT3 & ADC_SSFSTAT0_EMPTY) == 0); tmp = ADC->SSFIFO3; // read the data from the ADC // 1st order low-pass filter: time constant ~= 2^n samples // TF = (1/2^n)/(z-((2^n - 1)/2^n)), // eg, n=3, y(k+1) = y(k) - y(k)/8 + x(k)/8 => y += (x - y)/8 adcLPS += (((int)tmp - (int)adcLPS + 4) >> 3); // Low-Pass-Filter // compute the next position of the wheel */ tmp = (((1 << 10) - adcLPS)*(BSP_SCREEN_HEIGHT - 2)) >> 10; if (tmp != wheel) { // did the wheel position change? ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG); ope->x = (uint8_t)GAME_SHIP_X; // x-position is fixed ope->y = (uint8_t)tmp; AO_Ship->POST(ope, &l_ADCSeq3_IRQHandler); // post to the Ship wheel = tmp; // save the last position of the wheel } tmp = GPIOC->DATA_Bits[PUSH_BUTTON]; // read the push btn switch (debounce_state) { case 0: if (tmp != btn_debounced) { debounce_state = 1; // transition to the next state } break; case 1: if (tmp != btn_debounced) { debounce_state = 2; // transition to the next state } else { debounce_state = 0; // transition back to state 0 } break; case 2: if (tmp != btn_debounced) { debounce_state = 3; // transition to the next state } else { debounce_state = 0; // transition back to state 0 } break; case 3: if (tmp != btn_debounced) { btn_debounced = tmp; // save the debounced button value if (tmp == 0) { // is the button depressed? static QEvt const fireEvt = { PLAYER_TRIGGER_SIG, 0 }; QF::PUBLISH(&fireEvt, &l_ADCSeq3_IRQHandler); } } debounce_state = 0; // transition back to state 0 break; } } //............................................................................ void BSP_init(void) { // set the system clock as specified in lm3s_config.h (20MHz from PLL) SystemInit(); // enable clock to the peripherals used by the application SYSCTL->RCGC0 |= (1 << 16); // enable clock to ADC SYSCTL->RCGC1 |= (1 << 16) | (1 << 17); // enable clock to TIMER0 & 1 SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); // enable clock to GPIOA & C __NOP(); // wait after enabling clocks __NOP(); __NOP(); // Configure the ADC Sequence 3 to sample the potentiometer when the // timer expires. Set the sequence priority to 0 (highest). ADC->EMUX = (ADC->EMUX & ~(0xF << (3*4))) | (ADC_TRIGGER_TIMER << (3*4)); ADC->SSPRI = (ADC->SSPRI & ~(0xF << (3*4))) | (0 << (3*4)); // set ADC Sequence 3 step to 0 ADC->SSMUX3 = (ADC->SSMUX3 & ~(0xF << (0*4))) | ((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) << (0*4)); ADC->SSCTL3 = (ADC->SSCTL3 & ~(0xF << (0*4))) | (((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) >> 4) <<(0*4)); ADC->ACTSS |= (1 << 3); // configure TIMER1 to trigger the ADC to sample the potentiometer TIMER1->CTL &= ~((1 << 0) | (1 << 16)); TIMER1->CFG = 0; TIMER1->TAMR = 0x02; TIMER1->TAILR = SystemFrequency / 120; TIMER1->CTL |= 0x02; TIMER1->CTL |= 0x20; // configure the LED and push button GPIOC->DIR |= USER_LED; // set direction: output GPIOC->DEN |= USER_LED; // digital enable GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off GPIOC->DIR &= ~PUSH_BUTTON; // set direction: input GPIOC->DEN |= PUSH_BUTTON; // digital enable Display96x16x1Init(1); // initialize the OLED display if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_ADCSeq3_IRQHandler); } //............................................................................ void BSP_drawBitmap(uint8_t const *bitmap, uint8_t width, uint8_t height) { Display96x16x1ImageDraw(bitmap, 0, 0, width, (height >> 3)); } //............................................................................ void BSP_drawNString(uint8_t x, uint8_t y, char const *str) { Display96x16x1StringDraw(str, x, y); } //............................................................................ void BSP_updateScore(uint16_t score) { // no room on the OLED display of the EV-LM3S811 board for the score } //............................................................................ void BSP_displayOn(void) { Display96x16x1DisplayOn(); } //............................................................................ void BSP_displayOff(void) { Display96x16x1DisplayOff(); } //............................................................................ void QF::onStartup(void) { // set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC); // set priorities of all interrupts in the system... NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO); NVIC_SetPriority(ADCSeq3_IRQn, ADCSEQ3_PRIO); NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO); NVIC_EnableIRQ(ADCSeq3_IRQn); NVIC_EnableIRQ(GPIOPortA_IRQn); ADC->ISC = (1 << 3); ADC->IM |= (1 << 3); TIMER1->CTL |= ((1 << 0) | (1 << 16)); // enable TIMER1 } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QF::onIdle(void) { // entered with interrupts LOCKED, see NOTE01 // toggle the User LED on and then off, see NOTE02 GPIOC->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off #ifdef Q_SPY QF_INT_ENABLE(); if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done? uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept QF_INT_DISABLE(); uint8_t const *block = QS::getBlock(&fifo); // try to get next block QF_INT_ENABLE(); while (fifo-- != 0) { // any bytes in the block? UART0->DR = *block++; // put into the FIFO } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. __WFI(); // Wait-For-Interrupt QF_INT_ENABLE(); #else QF_INT_ENABLE(); #endif } //............................................................................ void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) { (void)file; // avoid compiler warning (void)line; // avoid compiler warning QF_INT_DISABLE(); // make sure that all interrupts are disabled for (;;) { // NOTE: replace the loop with reset for final version } } //............................................................................ // error routine that is called if the CMSIS library encounters an error extern "C" void assert_failed(char const *file, int line) { Q_onAssert(file, line); } //---------------------------------------------------------------------------- #ifdef Q_SPY //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[6*256]; // buffer for Quantum Spy uint32_t tmp; initBuf(qsBuf, sizeof(qsBuf)); // enable the peripherals used by the UART0 SYSCTL->RCGC1 |= (1 << 0); // enable clock to UART0 SYSCTL->RCGC2 |= (1 << 0); // enable clock to GPIOA __NOP(); // wait after enabling clocks __NOP(); __NOP(); // configure UART0 pins for UART operation tmp = (1 << 0) | (1 << 1); GPIOA->DIR &= ~tmp; GPIOA->AFSEL |= tmp; GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared GPIOA->SLR &= ~tmp; GPIOA->ODR &= ~tmp; GPIOA->PUR &= ~tmp; GPIOA->PDR &= ~tmp; GPIOA->DEN |= tmp; // configure the UART for the desired baud rate, 8-N-1 operation tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2; UART0->IBRD = tmp / 64; UART0->FBRD = tmp % 64; UART0->LCRH = 0x60; // configure 8-N-1 operation UART0->LCRH |= 0x10; UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9); QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC; QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_ALL_RECORDS); // QS_FILTER_OFF(QS_QEP_STATE_EMPTY); // QS_FILTER_OFF(QS_QEP_STATE_ENTRY); // QS_FILTER_OFF(QS_QEP_STATE_EXIT); // QS_FILTER_OFF(QS_QEP_STATE_INIT); // QS_FILTER_OFF(QS_QEP_INIT_TRAN); // QS_FILTER_OFF(QS_QEP_INTERN_TRAN); // QS_FILTER_OFF(QS_QEP_TRAN); // QS_FILTER_OFF(QS_QEP_IGNORED); QS_FILTER_OFF(QS_QF_ACTIVE_ADD); QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE); QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE); QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO); QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO); QS_FILTER_OFF(QS_QF_ACTIVE_GET); QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST); QS_FILTER_OFF(QS_QF_EQUEUE_INIT); QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO); QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO); QS_FILTER_OFF(QS_QF_EQUEUE_GET); QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST); QS_FILTER_OFF(QS_QF_MPOOL_INIT); QS_FILTER_OFF(QS_QF_MPOOL_GET); QS_FILTER_OFF(QS_QF_MPOOL_PUT); QS_FILTER_OFF(QS_QF_PUBLISH); QS_FILTER_OFF(QS_QF_NEW); QS_FILTER_OFF(QS_QF_GC_ATTEMPT); QS_FILTER_OFF(QS_QF_GC); // QS_FILTER_OFF(QS_QF_TICK); QS_FILTER_OFF(QS_QF_TIMEEVT_ARM); QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT); QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM); QS_FILTER_OFF(QS_QF_TIMEEVT_REARM); QS_FILTER_OFF(QS_QF_TIMEEVT_POST); QS_FILTER_OFF(QS_QF_CRIT_ENTRY); QS_FILTER_OFF(QS_QF_CRIT_EXIT); QS_FILTER_OFF(QS_QF_ISR_ENTRY); QS_FILTER_OFF(QS_QF_ISR_EXIT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // flag not set? return QS_tickTime_ - (QSTimeCtr)SysTick->VAL; } else { // the rollover occured, but the SysTick_ISR did not run yet return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL; } } //............................................................................ void QS::onFlush(void) { uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth uint8_t const *block; while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) { // busy-wait until TX FIFO empty while ((UART0->FR & UART_FR_TXFE) == 0) { } while (fifo-- != 0) { // any bytes in the block? UART0->DR = *block++; // put into the TX FIFO } fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth } } #endif // Q_SPY //---------------------------------------------------------------------------- ////////////////////////////////////////////////////////////////////////////// // NOTE01: // The QF_onIdle() callback is called with interrupts locked, because the // determination of the idle condition might change by any interrupt posting // an event. QF::onIdle() must internally unlock interrupts, ideally // atomically with putting the CPU to the power-saving mode. // // NOTE02: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //