///*************************************************************************** // Product: DPP example, STM32 NUCLEO-L053R8 board, preemptive QXK kernel // Last updated for version 5.9.5 // Last updated on 2017-07-20 // // Q u a n t u m L e a P s // --------------------------- // innovating embedded systems // // Copyright (C) Quantum Leaps, LLC. All rights reserved. // // This program is open source software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Alternatively, this program may be distributed and modified under the // terms of Quantum Leaps commercial licenses, which expressly supersede // the GNU General Public License and are specifically designed for // licensees interested in retaining the proprietary status of their code. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Contact information: // https://state-machine.com // mailto:info@state-machine.com //**************************************************************************** #include "qpcpp.h" #include "dpp.h" #include "bsp.h" #include "stm32l0xx.h" // CMSIS-compliant header file for the MCU used // add other drivers if necessary... Q_DEFINE_THIS_FILE // namespace DPP ************************************************************* namespace DPP { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // enum KernelUnawareISRs { // see NOTE00 // ... MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last }; // "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI); enum KernelAwareISRs { EXTI0_1_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00 SYSTICK_PRIO, // ... MAX_KERNEL_AWARE_CMSIS_PRI // keep always last }; // "kernel-aware" interrupts should not overlap the PendSV priority Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS))); // Local-scope objects ------------------------------------------------------- // LED pins available on the board (just one user LED LD2--Green on PA.5) #define LED_LD2 (1U << 5) // Button pins available on the board (just one user Button B1 on PC.13) #define BTN_B1 (1U << 13) static unsigned l_rnd; // random seed static QP::QXMutex l_rndMutex; // to protect the random number generator #ifdef Q_SPY QP::QSTimeCtr QS_tickTime_; QP::QSTimeCtr QS_tickPeriod_; // event-source identifiers used for tracing static uint8_t const l_SysTick_Handler = 0U; static uint8_t const l_EXTI0_1_IRQHandler = 0U; enum AppRecords { // application-specific trace records PHILO_STAT = QP::QS_USER }; #endif // ISRs used in this project ================================================= extern "C" { //............................................................................ void SysTick_Handler(void); // prototype void SysTick_Handler(void) { // state of the button debouncing, see below static struct ButtonsDebouncing { uint32_t depressed; uint32_t previous; } buttons = { ~0U, ~0U }; uint32_t current; uint32_t tmp; QXK_ISR_ENTRY(); // inform QXK about entering an ISR #ifdef Q_SPY { tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover } #endif QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0 // Perform the debouncing of buttons. The algorithm for debouncing // adapted from the book "Embedded Systems Dictionary" by Jack Ganssle // and Michael Barr, page 71. // current = ~GPIOC->IDR; // read Port C with the state of Button B1 tmp = buttons.depressed; // save the debounced depressed buttons buttons.depressed |= (buttons.previous & current); // set depressed buttons.depressed &= (buttons.previous | current); // clear released buttons.previous = current; // update the history tmp ^= buttons.depressed; // changed debounced depressed if ((tmp & BTN_B1) != 0U) { // debounced BTN_B1 state changed? if ((buttons.depressed & BTN_B1) != 0U) { // is BTN_B1 depressed? static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U}; QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler); } else { // the button is released static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U}; QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler); } } QXK_ISR_EXIT(); // inform QXK about exiting an ISR } //............................................................................ void EXTI0_1_IRQHandler(void); // prototype void EXTI0_1_IRQHandler(void) { QXK_ISR_ENTRY(); // inform QXK about entering an ISR // for testing.. DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), &l_EXTI0_1_IRQHandler); QXK_ISR_EXIT(); // inform QXK about exiting an ISR } } // extern "C" // BSP functions ============================================================= void BSP::init(void) { // NOTE: SystemInit() already called from the startup code // but SystemCoreClock needs to be updated // SystemCoreClockUpdate(); // enable GPIOA clock port for the LED LD2 RCC->IOPENR |= (1U << 0); // configure LED (PA.5) pin as push-pull output, no pull-up, pull-down GPIOA->MODER &= ~((3U << 2*5)); GPIOA->MODER |= ((1U << 2*5)); GPIOA->OTYPER &= ~((1U << 5)); GPIOA->OSPEEDR &= ~((3U << 2*5)); GPIOA->OSPEEDR |= ((1U << 2*5)); GPIOA->PUPDR &= ~((3U << 2*5)); // enable GPIOC clock port for the Button B1 RCC->IOPENR |= (1U << 2); // configure Button (PC.13) pins as input, no pull-up, pull-down GPIOC->MODER &= ~(3U << 2*13); GPIOC->OSPEEDR &= ~(3U << 2*13); GPIOC->OSPEEDR |= (1U << 2*13); GPIOC->PUPDR &= ~(3U << 2*13); BSP::randomSeed(1234U); if (QS_INIT((void *)0) == 0U) { // initialize the QS software tracing Q_ERROR(); } QS_OBJ_DICTIONARY(&l_SysTick_Handler); QS_OBJ_DICTIONARY(&l_EXTI0_1_IRQHandler); QS_USR_DICTIONARY(PHILO_STAT); } //............................................................................ void BSP::displayPhilStat(uint8_t n, char const *stat) { if (stat[0] == 'h') { GPIOA->BSRR |= LED_LD2; // turn LED on } else { GPIOA->BSRR |= (LED_LD2 << 16); // turn LED off } QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin QS_U8(1, n); // Philosopher number QS_STR(stat); // Philosopher status QS_END() } //............................................................................ void BSP::displayPaused(uint8_t paused) { // not enough LEDs to implement this feature if (paused != (uint8_t)0) { //GPIOA->BSRR |= (LED_LD2); // turn LED[n] on } else { //GPIOA->BSRR |= (LED_LD2 << 16); // turn LED[n] off } } //............................................................................ uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator l_rndMutex.lock(); // lock the shared random seed // "Super-Duper" Linear Congruential Generator (LCG) // LCG(2^32, 3*7*11*13*23, 0, seed) // uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U); l_rnd = rnd; // set for the next time l_rndMutex.unlock(); // unlock the shared random seed return (rnd >> 8); } //............................................................................ void BSP::randomSeed(uint32_t seed) { l_rndMutex.init(N_PHILO + 1U); l_rnd = seed; } //............................................................................ void BSP::ledOn(void) { GPIOA->BSRR |= (LED_LD2); // turn LED2 on } //............................................................................ void BSP::ledOff(void) { GPIOA->BSRR |= (LED_LD2 << 16); // turn LED2 off } //............................................................................ void BSP::terminate(int16_t result) { (void)result; } } // namespace DPP // namespace QP ************************************************************** namespace QP { // QF callbacks ============================================================== void QF::onStartup(void) { // set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC); // set priorities of ALL ISRs used in the system, see NOTE00 // // !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority(). // DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE! // NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO); NVIC_SetPriority(EXTI0_1_IRQn, DPP::EXTI0_1_PRIO); // ... // enable IRQs... NVIC_EnableIRQ(EXTI0_1_IRQn); } //............................................................................ void QF::onCleanup(void) { } //............................................................................ void QXK::onIdle(void) { // toggle the User LED on and then off (not enough LEDs, see NOTE01) QF_INT_DISABLE(); //GPIOA->BSRR |= (LED_LD2); // turn LED[n] on //GPIOA->BSRR |= (LED_LD2 << 16); // turn LED[n] off QF_INT_ENABLE(); #ifdef Q_SPY if ((USART2->ISR & 0x0080U) != 0) { // is TXE empty? QF_INT_DISABLE(); uint16_t b = QS::getByte(); QF_INT_ENABLE(); if (b != QS_EOD) { // not End-Of-Data? USART2->TDR = (b & 0xFFU); // put into the DR register } } #elif defined NDEBUG // Put the CPU and peripherals to the low-power mode. // you might need to customize the clock management for your application, // see the datasheet for your particular Cortex-M3 MCU. // // !!!CAUTION!!! // The WFI instruction stops the CPU clock, which unfortunately disables // the JTAG port, so the ST-Link debugger can no longer connect to the // board. For that reason, the call to __WFI() has to be used with CAUTION. // // NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and // reset the board, then connect with ST-Link Utilities and erase the part. // The trick with BOOT(0) is it gets the part to run the System Loader // instead of your broken code. When done disconnect BOOT0, and start over. // //__WFI(); Wait-For-Interrupt #endif } //............................................................................ extern "C" void Q_onAssert(char const *module, int loc) { // // NOTE: add here your application-specific error handling // (void)module; (void)loc; QS_ASSERTION(module, loc, static_cast(10000U)); NVIC_SystemReset(); } // QS callbacks ============================================================== #ifdef Q_SPY /*..........................................................................*/ #define __DIV(__PCLK, __BAUD) (((__PCLK / 4U) * 25U)/(__BAUD)) #define __DIVMANT(__PCLK, __BAUD) (__DIV(__PCLK, __BAUD)/100U) #define __DIVFRAQ(__PCLK, __BAUD) \ (((__DIV(__PCLK, __BAUD) - (__DIVMANT(__PCLK, __BAUD) * 100U)) \ * 16U + 50U) / 100U) #define __USART_BRR(__PCLK, __BAUD) \ ((__DIVMANT(__PCLK, __BAUD) << 4)|(__DIVFRAQ(__PCLK, __BAUD) & 0x0FU)) //............................................................................ bool QS::onStartup(void const *arg) { static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy initBuf(qsBuf, sizeof(qsBuf)); // enable peripheral clock for USART2 RCC->IOPENR |= ( 1ul << 0); // Enable GPIOA clock RCC->APB1ENR |= ( 1ul << 17); // Enable USART#2 clock // Configure PA3 to USART2_RX, PA2 to USART2_TX */ GPIOA->AFR[0] &= ~((15ul << 4* 3) | (15ul << 4* 2) ); GPIOA->AFR[0] |= (( 4ul << 4* 3) | ( 4ul << 4* 2) ); GPIOA->MODER &= ~(( 3ul << 2* 3) | ( 3ul << 2* 2) ); GPIOA->MODER |= (( 2ul << 2* 3) | ( 2ul << 2* 2) ); USART2->BRR = __USART_BRR(SystemCoreClock, 115200ul); // baud rate USART2->CR3 = 0x0000; // no flow control USART2->CR2 = 0x0000; // 1 stop bit USART2->CR1 = ((1ul << 2) | // enable RX (1ul << 3) | // enable TX (0ul << 12) | // 8 data bits (0ul << 28) | // 8 data bits (1ul << 0) ); // enable USART DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC; DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero // setup the QS filters... QS_FILTER_ON(QS_QEP_STATE_ENTRY); QS_FILTER_ON(QS_QEP_STATE_EXIT); QS_FILTER_ON(QS_QEP_STATE_INIT); QS_FILTER_ON(QS_QEP_INIT_TRAN); QS_FILTER_ON(QS_QEP_INTERN_TRAN); QS_FILTER_ON(QS_QEP_TRAN); QS_FILTER_ON(QS_QEP_IGNORED); QS_FILTER_ON(QS_QEP_DISPATCH); QS_FILTER_ON(QS_QEP_UNHANDLED); QS_FILTER_ON(DPP::PHILO_STAT); return true; // return success } //............................................................................ void QS::onCleanup(void) { } //............................................................................ QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set? return DPP::QS_tickTime_ - static_cast(SysTick->VAL); } else { // the rollover occured, but the SysTick_ISR did not run yet return DPP::QS_tickTime_ + DPP::QS_tickPeriod_ - static_cast(SysTick->VAL); } } //............................................................................ void QS::onFlush(void) { uint16_t b; QF_INT_DISABLE(); while ((b = getByte()) != QS_EOD) { // while not End-Of-Data... QF_INT_ENABLE(); while ((USART2->ISR & 0x0080U) == 0U) { // while TXE not empty } USART2->TDR = (b & 0xFFU); // put into the DR register QF_INT_DISABLE(); } QF_INT_ENABLE(); } //............................................................................ //! callback function to reset the target (to be implemented in the BSP) void QS::onReset(void) { //TBD } //............................................................................ //! callback function to execute a uesr command (to be implemented in BSP) void QS::onCommand(uint8_t cmdId, uint32_t param1, uint32_t param2, uint32_t param3) { (void)cmdId; (void)param1; (void)param2; (void)param3; //TBD } #endif // Q_SPY //--------------------------------------------------------------------------*/ } // namespace QP //**************************************************************************** // NOTE00: // The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest // ISR priority that is disabled by the QF framework. The value is suitable // for the NVIC_SetPriority() CMSIS function. // // Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e., // with the numerical values of priorities equal or higher than // QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY // macros or any other QF/QK services. These ISRs are "QF-aware". // // Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority // level (i.e., with the numerical values of priorities less than // QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel. // Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they // can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism // by which a "QF-unaware" ISR can communicate with the QF framework is by // triggering a "QF-aware" ISR, which can post/publish events. // // NOTE01: // The User LED is used to visualize the idle loop activity. The brightness // of the LED is proportional to the frequency of invcations of the idle loop. // Please note that the LED is toggled with interrupts locked, so no interrupt // execution time contributes to the brightness of the User LED. //