mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-02-04 06:13:00 +08:00
235 lines
8.5 KiB
C++
235 lines
8.5 KiB
C++
/// @file
|
|
/// @brief QUTEST port for the EFM32-SLSTK3401A board
|
|
/// @ingroup qs
|
|
/// @cond
|
|
///***************************************************************************
|
|
/// Last updated for version 6.9.2a
|
|
/// Last updated on 2021-01-28
|
|
///
|
|
/// Q u a n t u m L e a P s
|
|
/// ------------------------
|
|
/// Modern Embedded Software
|
|
///
|
|
/// Copyright (C) 2005-2020 Quantum Leaps. All rights reserved.
|
|
///
|
|
/// This program is open source software: you can redistribute it and/or
|
|
/// modify it under the terms of the GNU General Public License as published
|
|
/// by the Free Software Foundation, either version 3 of the License, or
|
|
/// (at your option) any later version.
|
|
///
|
|
/// Alternatively, this program may be distributed and modified under the
|
|
/// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
/// the GNU General Public License and are specifically designed for
|
|
/// licensees interested in retaining the proprietary status of their code.
|
|
///
|
|
/// This program is distributed in the hope that it will be useful,
|
|
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
/// GNU General Public License for more details.
|
|
///
|
|
/// You should have received a copy of the GNU General Public License
|
|
/// along with this program. If not, see <www.gnu.org/licenses>.
|
|
///
|
|
/// Contact information:
|
|
/// <www.state-machine.com/licensing>
|
|
/// <info@state-machine.com>
|
|
///***************************************************************************
|
|
/// @endcond
|
|
|
|
#ifndef Q_SPY
|
|
#error "Q_SPY must be defined to compile qutest_port.cpp"
|
|
#endif // Q_SPY
|
|
|
|
#define QP_IMPL // this is QP implementation
|
|
#include "qf_port.hpp" // QF port
|
|
#include "qs_port.hpp" // QS port
|
|
#include "qs_pkg.hpp" // QS package-scope interface
|
|
#include "qassert.h" // QP embedded systems-friendly assertions
|
|
|
|
#include "em_device.h" // the device specific header (SiLabs)
|
|
#include "em_cmu.h" // Clock Management Unit (SiLabs)
|
|
#include "em_gpio.h" // GPIO (SiLabs)
|
|
#include "em_usart.h" // USART (SiLabs)
|
|
// add other drivers if necessary...
|
|
|
|
//Q_DEFINE_THIS_MODULE("qutest_port")
|
|
|
|
using namespace QP;
|
|
|
|
// ISRs defined in this BSP --------------------------------------------------
|
|
extern "C" void USART0_RX_IRQHandler(void);
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
|
|
|
|
#define LED_PORT gpioPortF
|
|
#define LED0_PIN 4
|
|
#define LED1_PIN 5
|
|
|
|
#define PB_PORT gpioPortF
|
|
#define PB0_PIN 6
|
|
#define PB1_PIN 7
|
|
|
|
//............................................................................
|
|
extern "C" {
|
|
|
|
// ISR for receiving bytes from the QSPY Back-End
|
|
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
|
|
// the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
|
|
// QK_ISR_EXIT and they cannot post or publish events.
|
|
//
|
|
void USART0_RX_IRQHandler(void) {
|
|
// while RX FIFO NOT empty
|
|
while ((l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
|
|
uint32_t b = l_USART0->RXDATA;
|
|
QP::QS::rxPut(b);
|
|
}
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
// QS callbacks ==============================================================
|
|
bool QS::onStartup(void const *arg) {
|
|
(void)arg; // unused parameter
|
|
|
|
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
|
|
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
|
|
static USART_InitAsync_TypeDef init = {
|
|
usartEnable, // Enable RX/TX when init completed
|
|
0, // Use current clock for configuring baudrate
|
|
115200, // 115200 bits/s
|
|
usartOVS16, // 16x oversampling
|
|
usartDatabits8, // 8 databits
|
|
usartNoParity, // No parity
|
|
usartStopbits1, // 1 stopbit
|
|
0, // Do not disable majority vote
|
|
0, // Not USART PRS input mode
|
|
usartPrsRxCh0, // PRS channel 0
|
|
0, // Auto CS functionality enable/disable switch
|
|
0, // Auto CS Hold cycles
|
|
0 // Auto CS Setup cycles
|
|
};
|
|
|
|
initBuf (qsTxBuf, sizeof(qsTxBuf));
|
|
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
// NOTE: SystemInit() already called from the startup code
|
|
// but SystemCoreClock needs to be updated
|
|
//
|
|
SystemCoreClockUpdate();
|
|
|
|
// configure the FPU usage by choosing one of the options... */
|
|
#if 0
|
|
// OPTION 1:
|
|
// Use the automatic FPU state preservation and the FPU lazy stacking.
|
|
//
|
|
// NOTE:
|
|
// Use the following setting when FPU is used in more than one task or
|
|
// in any ISRs. This setting is the safest and recommended, but requires
|
|
// extra stack space and CPU cycles.
|
|
//
|
|
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
|
|
#else
|
|
// OPTION 2:
|
|
// Do NOT to use the automatic FPU state preservation and
|
|
// do NOT to use the FPU lazy stacking.
|
|
//
|
|
// NOTE:
|
|
// Use the following setting when FPU is used in ONE task only and not
|
|
// in any ISR. This setting is very efficient, but if more than one task
|
|
// (or ISR) start using the FPU, this can lead to corruption of the
|
|
// FPU registers. This option should be used with CAUTION.
|
|
//
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos)
|
|
| (1U << FPU_FPCCR_LSPEN_Pos));
|
|
#endif // FPU
|
|
|
|
// Enable peripheral clocks
|
|
CMU_ClockEnable(cmuClock_HFPER, true);
|
|
CMU_ClockEnable(cmuClock_GPIO, true);
|
|
|
|
// To avoid false start, configure output as high
|
|
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
|
|
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
|
|
|
|
// Enable DK RS232/UART switch
|
|
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
|
|
CMU_ClockEnable(cmuClock_USART0, true);
|
|
|
|
// configure the UART for the desired baud rate, 8-N-1 operation
|
|
init.enable = usartDisable;
|
|
USART_InitAsync(l_USART0, &init);
|
|
|
|
// enable pins at correct UART/USART location.
|
|
l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
|
|
l_USART0->ROUTELOC0 = (l_USART0->ROUTELOC0 &
|
|
~(_USART_ROUTELOC0_TXLOC_MASK
|
|
| _USART_ROUTELOC0_RXLOC_MASK));
|
|
|
|
// Clear previous RX interrupts
|
|
USART_IntClear(l_USART0, USART_IF_RXDATAV);
|
|
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
|
|
|
|
// Enable USART RX interrupts
|
|
USART_IntEnable(l_USART0, USART_IF_RXDATAV);
|
|
|
|
// Finally enable the UART
|
|
USART_Enable(l_USART0, usartEnable);
|
|
|
|
// Clear previous RX interrupts
|
|
USART_IntClear(l_USART0, USART_IF_RXDATAV);
|
|
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
|
|
|
|
// explicitly set NVIC priorities of all Cortex-M interrupts used
|
|
NVIC_SetPriorityGrouping(0U);
|
|
NVIC_SetPriority(USART0_RX_IRQn, 0U); // kernel unaware interrupt
|
|
|
|
// enable the USART RX interrupt...
|
|
NVIC_EnableIRQ(USART0_RX_IRQn); // UART0 interrupt used for QS-RX
|
|
|
|
return true; // success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t b;
|
|
|
|
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
|
|
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
|
|
// while TXE not empty
|
|
while ((l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
|
|
}
|
|
l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
|
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
|
|
}
|
|
}
|
|
//............................................................................
|
|
// callback function to reset the target (to be implemented in the BSP)
|
|
void QS::onReset(void) {
|
|
NVIC_SystemReset();
|
|
}
|
|
//............................................................................
|
|
void QS::onTestLoop() {
|
|
rxPriv_.inTestLoop = true;
|
|
while (rxPriv_.inTestLoop) {
|
|
|
|
// turn the LED1 on and off (glow)
|
|
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
|
|
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
|
|
|
|
rxParse(); // parse all the received bytes
|
|
|
|
if ((l_USART0->STATUS & USART_STATUS_TXBL) != 0) { // is TXE empty?
|
|
uint16_t b = getByte();
|
|
if (b != QS_EOD) { // not End-Of-Data?
|
|
l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
|
|
}
|
|
}
|
|
}
|
|
// set inTestLoop to true in case calls to QS_onTestLoop() nest,
|
|
// which can happen through the calls to QS_TEST_WAIT().
|
|
rxPriv_.inTestLoop = true;
|
|
}
|