mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-14 05:42:57 +08:00
414 lines
14 KiB
C++
414 lines
14 KiB
C++
//============================================================================
|
|
// QP/C++ Real-Time Embedded Framework (RTEF)
|
|
// Copyright (C) 2005 Quantum Leaps, LLC <state-machine.com>.
|
|
//
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
|
|
//
|
|
// This software is dual-licensed under the terms of the open source GNU
|
|
// General Public License version 3 (or any later version), or alternatively,
|
|
// under the terms of one of the closed source Quantum Leaps commercial
|
|
// licenses.
|
|
//
|
|
// The terms of the open source GNU General Public License version 3
|
|
// can be found at: <www.gnu.org/licenses/gpl-3.0>
|
|
//
|
|
// The terms of the closed source Quantum Leaps commercial licenses
|
|
// can be found at: <www.state-machine.com/licensing>
|
|
//
|
|
// Redistributions in source code must retain this top-level comment block.
|
|
// Plagiarizing this software to sidestep the license obligations is illegal.
|
|
//
|
|
// Contact information:
|
|
// <www.state-machine.com/licensing>
|
|
// <info@state-machine.com>
|
|
//============================================================================
|
|
//! @date Last updated on: 2024-02-16
|
|
//! @version Last updated for: @ref qpcpp_7_3_3
|
|
//!
|
|
//! @file
|
|
//! @brief QF/C++ port to POSIX-QV (single-threaded)
|
|
|
|
// expose features from the 2008 POSIX standard (IEEE Standard 1003.1-2008)
|
|
#define _POSIX_C_SOURCE 200809L
|
|
|
|
#define QP_IMPL // this is QP implementation
|
|
#include "qp_port.hpp" // QP port
|
|
#include "qp_pkg.hpp" // QP package-scope interface
|
|
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
|
|
#ifdef Q_SPY // QS software tracing enabled?
|
|
#include "qs_port.hpp" // QS port
|
|
#include "qs_pkg.hpp" // QS package-scope internal interface
|
|
#else
|
|
#include "qs_dummy.hpp" // disable the QS software tracing
|
|
#endif // Q_SPY
|
|
|
|
#include <limits.h> // for PTHREAD_STACK_MIN
|
|
#include <sys/mman.h> // for mlockall()
|
|
#include <sys/ioctl.h>
|
|
#include <time.h> // for clock_nanosleep()
|
|
#include <string.h> // for memcpy() and memset()
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
|
|
namespace { // unnamed local namespace
|
|
|
|
Q_DEFINE_THIS_MODULE("qf_port")
|
|
|
|
// Local objects =============================================================
|
|
|
|
static bool l_isRunning; // flag indicating when QF is running
|
|
static struct timespec l_tick; // structure for the clock tick
|
|
static int_t l_tickPrio; // priority of the ticker thread
|
|
|
|
constexpr long NSEC_PER_SEC {1000000000L};
|
|
constexpr long DEFAULT_TICKS_PER_SEC {100L};
|
|
|
|
//============================================================================
|
|
static void *ticker_thread(void *arg); // prototype
|
|
static void *ticker_thread(void *arg) { // for pthread_create()
|
|
Q_UNUSED_PAR(arg);
|
|
|
|
// system clock tick must be configured
|
|
Q_REQUIRE_ID(100, l_tick.tv_nsec != 0);
|
|
|
|
// get the absolute monotonic time for no-drift sleeping
|
|
static struct timespec next_tick;
|
|
clock_gettime(CLOCK_MONOTONIC, &next_tick);
|
|
|
|
// round down nanoseconds to the nearest configured period
|
|
next_tick.tv_nsec = (next_tick.tv_nsec / l_tick.tv_nsec) * l_tick.tv_nsec;
|
|
|
|
while (l_isRunning) { // the clock tick loop...
|
|
|
|
// advance to the next tick (absolute time)
|
|
next_tick.tv_nsec += l_tick.tv_nsec;
|
|
if (next_tick.tv_nsec >= NSEC_PER_SEC) {
|
|
next_tick.tv_nsec -= NSEC_PER_SEC;
|
|
next_tick.tv_sec += 1;
|
|
}
|
|
|
|
// sleep without drifting till next_tick (absolute), see NOTE03
|
|
if (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
|
|
&next_tick, NULL) == 0) // success?
|
|
{
|
|
// clock tick callback (must call QTimeEvt::TICK_X())
|
|
QP::QF::onClockTick();
|
|
}
|
|
}
|
|
return nullptr; // return success
|
|
}
|
|
//............................................................................
|
|
static void sigIntHandler(int dummy); // prototype
|
|
static void sigIntHandler(int dummy) {
|
|
Q_UNUSED_PAR(dummy);
|
|
QP::QF::onCleanup();
|
|
exit(-1);
|
|
}
|
|
|
|
} // unnamed local namespace
|
|
|
|
//============================================================================
|
|
namespace QP {
|
|
namespace QF {
|
|
|
|
QPSet readySet_;
|
|
QPSet readySet_dis_;
|
|
pthread_cond_t condVar_; // cond.var. to signal events
|
|
|
|
//============================================================================
|
|
// QF functions
|
|
|
|
// NOTE: initialize the critical section mutex as non-recursive,
|
|
// but check that nesting of critical sections never occurs
|
|
// (see QF::enterCriticalSection_()/QF::leaveCriticalSection_()
|
|
static pthread_mutex_t l_critSectMutex_ = PTHREAD_MUTEX_INITIALIZER;
|
|
static int_t l_critSectNest; // critical section nesting up-down counter
|
|
|
|
//............................................................................
|
|
void enterCriticalSection_() {
|
|
if (l_isRunning) {
|
|
pthread_mutex_lock(&l_critSectMutex_);
|
|
Q_ASSERT_INCRIT(100, l_critSectNest == 0); // NO nesting of crit.sect!
|
|
++l_critSectNest;
|
|
}
|
|
}
|
|
//............................................................................
|
|
void leaveCriticalSection_() {
|
|
if (l_isRunning) {
|
|
Q_ASSERT_INCRIT(200, l_critSectNest == 1); // crit.sect. must ballace!
|
|
if ((--l_critSectNest) == 0) {
|
|
pthread_mutex_unlock(&l_critSectMutex_);
|
|
}
|
|
}
|
|
}
|
|
|
|
//............................................................................
|
|
void init() {
|
|
// init the global condition variable with the default initializer
|
|
pthread_cond_init(&condVar_, NULL);
|
|
|
|
readySet_.setEmpty();
|
|
#ifndef Q_UNSAFE
|
|
readySet_.update_(&readySet_dis_);
|
|
#endif
|
|
|
|
// lock memory so we're never swapped out to disk
|
|
//mlockall(MCL_CURRENT | MCL_FUTURE); // un-comment when supported
|
|
|
|
l_tick.tv_sec = 0;
|
|
l_tick.tv_nsec = NSEC_PER_SEC / DEFAULT_TICKS_PER_SEC; // default rate
|
|
l_tickPrio = sched_get_priority_min(SCHED_FIFO); // default ticker prio
|
|
|
|
// install the SIGINT (Ctrl-C) signal handler
|
|
struct sigaction sig_act;
|
|
memset(&sig_act, 0, sizeof(sig_act));
|
|
sig_act.sa_handler = &sigIntHandler;
|
|
sigaction(SIGINT, &sig_act, NULL);
|
|
}
|
|
|
|
//............................................................................
|
|
int run() {
|
|
l_isRunning = true; // QF is running
|
|
|
|
onStartup(); // application-specific startup callback
|
|
|
|
QF_CRIT_STAT
|
|
// system clock tick configured?
|
|
if ((l_tick.tv_sec != 0) || (l_tick.tv_nsec != 0)) {
|
|
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
|
|
// SCHED_FIFO corresponds to real-time preemptive priority-based
|
|
// scheduler.
|
|
// NOTE: This scheduling policy requires the superuser privileges
|
|
pthread_attr_setschedpolicy (&attr, SCHED_FIFO);
|
|
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
|
|
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
struct sched_param param;
|
|
param.sched_priority = l_tickPrio;
|
|
|
|
pthread_attr_setschedparam(&attr, ¶m);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
pthread_t ticker;
|
|
int err = pthread_create(&ticker, &attr, &ticker_thread, 0);
|
|
if (err != 0) {
|
|
// Creating the p-thread with the SCHED_FIFO policy failed.
|
|
// Most probably this application has no superuser privileges,
|
|
// so we just fall back to the default SCHED_OTHER policy
|
|
// and priority 0.
|
|
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
|
|
param.sched_priority = 0;
|
|
pthread_attr_setschedparam(&attr, ¶m);
|
|
err = pthread_create(&ticker, &attr, &ticker_thread, 0);
|
|
}
|
|
QF_CRIT_ENTRY();
|
|
Q_ASSERT_INCRIT(310, err == 0); // ticker thread must be created
|
|
QF_CRIT_EXIT();
|
|
|
|
//pthread_attr_getschedparam(&attr, ¶m);
|
|
//printf("param.sched_priority==%d\n", param.sched_priority);
|
|
|
|
pthread_attr_destroy(&attr);
|
|
}
|
|
|
|
// the combined event-loop and background-loop of the QV kernel
|
|
QF_CRIT_ENTRY();
|
|
|
|
// produce the QS_QF_RUN trace record
|
|
QS_BEGIN_PRE_(QS_QF_RUN, 0U)
|
|
QS_END_PRE_()
|
|
|
|
while (l_isRunning) {
|
|
Q_ASSERT_INCRIT(300, readySet_.verify_(&readySet_dis_));
|
|
|
|
// find the maximum priority AO ready to run
|
|
if (readySet_.notEmpty()) {
|
|
std::uint_fast8_t p = readySet_.findMax();
|
|
QActive *a = QActive::registry_[p];
|
|
|
|
// the active object 'a' must still be registered in QF
|
|
// (e.g., it must not be stopped)
|
|
Q_ASSERT_INCRIT(320, a != nullptr);
|
|
QF_CRIT_EXIT();
|
|
|
|
QEvt const *e = a->get_();
|
|
// dispatch event (virtual call)
|
|
a->dispatch(e, a->getPrio());
|
|
QF::gc(e);
|
|
|
|
QF_CRIT_ENTRY();
|
|
if (a->getEQueue().isEmpty()) { // empty queue?
|
|
readySet_.remove(p);
|
|
#ifndef Q_UNSAFE
|
|
readySet_.update_(&readySet_dis_);
|
|
#endif
|
|
}
|
|
}
|
|
else {
|
|
// the QV kernel in embedded systems calls here the QV_onIdle()
|
|
// callback. However, the POSIX-QV port does not do busy-waiting
|
|
// for events. Instead, the POSIX-QV port efficiently waits until
|
|
// QP events become available.
|
|
while (readySet_.isEmpty()) {
|
|
Q_ASSERT_INCRIT(390, l_critSectNest == 1);
|
|
--l_critSectNest;
|
|
|
|
pthread_cond_wait(&condVar_, &l_critSectMutex_);
|
|
|
|
Q_ASSERT_INCRIT(391, l_critSectNest == 0);
|
|
++l_critSectNest;
|
|
}
|
|
}
|
|
}
|
|
QF_CRIT_EXIT();
|
|
onCleanup(); // cleanup callback
|
|
QS_EXIT(); // cleanup the QSPY connection
|
|
|
|
pthread_cond_destroy(&condVar_); // cleanup the condition variable
|
|
pthread_mutex_destroy(&l_critSectMutex_); // cleanup the global mutex
|
|
|
|
return 0; // return success
|
|
}
|
|
//............................................................................
|
|
void stop() {
|
|
l_isRunning = false; // terminate the main event-loop thread
|
|
|
|
// unblock the event-loop so it can terminate
|
|
readySet_.insert(1U);
|
|
#ifndef Q_UNSAFE
|
|
readySet_.update_(&readySet_dis_);
|
|
#endif
|
|
pthread_cond_signal(&condVar_);
|
|
}
|
|
//............................................................................
|
|
void setTickRate(std::uint32_t ticksPerSec, int tickPrio) {
|
|
if (ticksPerSec != 0U) {
|
|
l_tick.tv_nsec = NSEC_PER_SEC / ticksPerSec;
|
|
}
|
|
else {
|
|
l_tick.tv_nsec = 0U; // means NO system clock tick
|
|
}
|
|
l_tickPrio = tickPrio;
|
|
}
|
|
|
|
// console access ============================================================
|
|
#ifdef QF_CONSOLE
|
|
|
|
#include <termios.h>
|
|
|
|
static struct termios l_tsav; // structure with saved terminal attributes
|
|
|
|
void consoleSetup() {
|
|
struct termios tio; // modified terminal attributes
|
|
|
|
tcgetattr(0, &l_tsav); // save the current terminal attributes
|
|
tcgetattr(0, &tio); // obtain the current terminal attributes
|
|
tio.c_lflag &= ~(ICANON | ECHO); // disable the canonical mode & echo
|
|
tcsetattr(0, TCSANOW, &tio); // set the new attributes
|
|
}
|
|
//............................................................................
|
|
void consoleCleanup() {
|
|
tcsetattr(0, TCSANOW, &l_tsav); // restore the saved attributes
|
|
}
|
|
//............................................................................
|
|
int consoleGetKey() {
|
|
int byteswaiting;
|
|
ioctl(0, FIONREAD, &byteswaiting);
|
|
if (byteswaiting > 0) {
|
|
char ch;
|
|
byteswaiting = read(0, &ch, 1);
|
|
return (int)ch;
|
|
}
|
|
return 0; // no input at this time
|
|
}
|
|
//............................................................................
|
|
int consoleWaitForKey() {
|
|
return static_cast<int>(getchar());
|
|
}
|
|
#endif
|
|
|
|
} // namespace QF
|
|
|
|
// QActive functions =========================================================
|
|
void QActive::start(QPrioSpec const prioSpec,
|
|
QEvt const * * const qSto, std::uint_fast16_t const qLen,
|
|
void * const stkSto, std::uint_fast16_t const stkSize,
|
|
void const * const par)
|
|
{
|
|
Q_UNUSED_PAR(stkSto);
|
|
Q_UNUSED_PAR(stkSize);
|
|
|
|
// no per-AO stack needed for this port
|
|
QF_CRIT_STAT
|
|
QF_CRIT_ENTRY();
|
|
Q_REQUIRE_INCRIT(800, stkSto == nullptr);
|
|
QF_CRIT_EXIT();
|
|
|
|
m_eQueue.init(qSto, qLen);
|
|
|
|
m_prio = static_cast<std::uint8_t>(prioSpec & 0xFFU); // QF-priority
|
|
m_pthre = 0U; // preemption-threshold (not used in this port)
|
|
register_(); // register this AO
|
|
|
|
// top-most initial tran. (virtual call)
|
|
this->init(par, m_prio);
|
|
QS_FLUSH(); // flush the trace buffer to the host
|
|
}
|
|
|
|
//............................................................................
|
|
#ifdef QACTIVE_CAN_STOP
|
|
void QActive::stop() {
|
|
unsubscribeAll(); // unsubscribe from all events
|
|
|
|
// make sure the AO is no longer in "ready set"
|
|
QF_CRIT_STAT
|
|
QF_CRIT_ENTRY();
|
|
QF::readySet_.remove(m_prio);
|
|
#ifndef Q_UNSAFE
|
|
QF::readySet_.update_(&QF::readySet_dis_);
|
|
#endif
|
|
QF_CRIT_EXIT();
|
|
|
|
unregister_();
|
|
}
|
|
#endif
|
|
|
|
} // namespace QP
|
|
|
|
//============================================================================
|
|
// NOTE01:
|
|
// In Linux, the scheduler policy closest to real-time is the SCHED_FIFO
|
|
// policy, available only with superuser privileges. QF::run() attempts to set
|
|
// this policy as well as to maximize its priority, so that the ticking
|
|
// occurs in the most timely manner (as close to an interrupt as possible).
|
|
// However, setting the SCHED_FIFO policy might fail, most probably due to
|
|
// insufficient privileges.
|
|
//
|
|
// NOTE03:
|
|
// Any blocking system call, such as clock_nanosleep() system call can
|
|
// be interrupted by a signal, such as ^C from the keyboard. In this case this
|
|
// QF port breaks out of the event-loop and returns to main() that exits and
|
|
// terminates all spawned p-threads.
|
|
//
|
|
// NOTE04:
|
|
// According to the man pages (for pthread_attr_setschedpolicy) the only value
|
|
// supported in the Linux p-threads implementation is PTHREAD_SCOPE_SYSTEM,
|
|
// meaning that the threads contend for CPU time with all processes running on
|
|
// the machine. In particular, thread priorities are interpreted relative to
|
|
// the priorities of all other processes on the machine.
|
|
//
|
|
// This is good, because it seems that if we set the priorities high enough,
|
|
// no other process (or thread running within) can gain control over the CPU.
|
|
//
|
|
// However, QF limits the number of priority levels to QF_MAX_ACTIVE.
|
|
// Assuming that a QF application will be real-time, this port reserves the
|
|
// three highest p-thread priorities for the ISR-like threads (e.g., I/O),
|
|
// and the remaining highest-priorities for the active objects.
|
|
//
|
|
|