Quantum Leaps 1b45201043 5.9.5
2017-07-20 13:06:27 -04:00

1049 lines
38 KiB
C++

///***************************************************************************
// Product: "Fly 'n' Shoot" game example for Win32-GUI
// Last updated for version 5.9.5
// Last updated on 2017-07-20
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
///***************************************************************************
#include "qpcpp.h"
#include "game.h"
#include "bsp.h"
#include "qwin_gui.h" // QWIN GUI
#include "resource.h" // GUI resource IDs generated by the resource editior
#include <stdio.h> // for _snprintf_s()
#include <stdlib.h>
#ifdef Q_SPY
#define WIN32_LEAN_AND_MEAN
#include <windows.h> // Win32 API for multithreading
#include <winsock2.h> // for Windows network facilities
#endif
Q_DEFINE_THIS_FILE
///***************************************************************************
// thread function for running the application main()
static DWORD WINAPI appThread(LPVOID par) {
(void)par; // unused parameter
return main_gui(); // run the QF application
}
///***************************************************************************
namespace GAME {
// local variables -----------------------------------------------------------
static HINSTANCE l_hInst; // this application instance
static HWND l_hWnd; // main window handle
static LPSTR l_cmdLine; // the command line string
static GraphicDisplay l_lcd; // LCD display on EFM32-SLSTK3401A
static SegmentDisplay l_userLED0; // USER LED0 on EFM32-SLSTK3401A
static SegmentDisplay l_userLED1; // USER LED1 on EFM32-SLSTK3401A
static SegmentDisplay l_scoreBoard; // segment display for the score
static OwnerDrawnButton l_userBtn0; // USER Button0 on EFM32-SLSTK3401A
static OwnerDrawnButton l_userBtn1; // USER Button1 on EFM32-SLSTK3401A
// (R,G,B) colors for the LCD display
static BYTE const c_onColor[3] = { 0x07U, 0x07U, 0x07U }; // dark grey
static BYTE const c_offColor[3] = { 0xA0U, 0xA0U, 0xA0U }; // light grey
// LCD geometry and frame buffer
static uint32_t l_fb[BSP_SCREEN_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
// the walls buffer
static uint32_t l_walls[GAME_TUNNEL_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
static unsigned l_rnd; // random seed
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h);
static void paintBitsClear(uint8_t x, uint8_t y,
uint8_t const *bits, uint8_t h);
static void playerTrigger(void);
#ifdef Q_SPY
enum QSUserRecords {
PLAYER_TRIGGER = QP::QS_USER,
COMMAND_STAT
};
static SOCKET l_sock = INVALID_SOCKET;
static uint8_t const l_clock_tick = 0U;
static uint8_t const l_mouse = 0U;
#endif
// Local functions -----------------------------------------------------------
static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam);
//............................................................................
//..........................................................................*/
void BSP_init(void) {
if (QS_INIT(l_cmdLine) == (uint8_t)0) { // QS initialization failed?
MessageBox(l_hWnd,
"Cannot connect to QSPY via TCP/IP\n"
"Please make sure that 'qspy -t' is running",
"QS_INIT() Error",
MB_OK | MB_ICONEXCLAMATION | MB_APPLMODAL);
}
QS_OBJ_DICTIONARY(&l_clock_tick); // must be called *after* QF_init()
QS_USR_DICTIONARY(PLAYER_TRIGGER);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//..........................................................................*/
void BSP_terminate(int16_t result) {
#ifdef Q_SPY
if (l_sock != INVALID_SOCKET) {
closesocket(l_sock);
l_sock = INVALID_SOCKET;
}
#endif
QP::QF::stop(); // stop the main QF application and the ticker thread
// cleanup all QWIN resources...
OwnerDrawnButton_xtor(&l_userBtn0); // cleanup the l_userBtn0 resources
OwnerDrawnButton_xtor(&l_userBtn1); // cleanup the l_userBtn1 resources
SegmentDisplay_xtor(&l_userLED0); // cleanup the l_userLED0 resources
SegmentDisplay_xtor(&l_userLED1); // cleanup the l_userLED1 resources
SegmentDisplay_xtor(&l_scoreBoard); // cleanup the scoreBoard resources
GraphicDisplay_xtor(&l_lcd); // cleanup the l_lcd resources
// end the main dialog
EndDialog(l_hWnd, result);
}
//..........................................................................*/
void BSP_updateScreen(void) {
UINT x, y;
// turn LED1 on
SegmentDisplay_setSegment(&l_userLED1, 0U, 1U);
// map the LCD pixels to the GraphicDisplay pixels...
for (y = 0; y < BSP_SCREEN_HEIGHT; ++y) {
for (x = 0; x < BSP_SCREEN_WIDTH; ++x) {
uint32_t bits = l_fb[y][x >> 5];
if ((bits & (1U << (x & 0x1FU))) != 0U) {
GraphicDisplay_setPixel(&l_lcd, x, y, c_onColor);
}
else {
GraphicDisplay_clearPixel(&l_lcd, x, y);
}
}
}
GraphicDisplay_redraw(&l_lcd); // redraw the updated display
// turn LED1 off
SegmentDisplay_setSegment(&l_userLED1, 0U, 0U);
}
//..........................................................................*/
void BSP_clearFB() {
uint_fast8_t y;
for (y = 0U; y < BSP_SCREEN_HEIGHT; ++y) {
l_fb[y][0] = 0U;
l_fb[y][1] = 0U;
l_fb[y][2] = 0U;
l_fb[y][3] = 0U;
}
}
//..........................................................................*/
void BSP_clearWalls() {
uint_fast8_t y;
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
l_walls[y][0] = 0U;
l_walls[y][1] = 0U;
l_walls[y][2] = 0U;
l_walls[y][3] = 0U;
}
}
//..........................................................................*/
bool BSP_isThrottle(void) { // is the throttle button depressed?
return OwnerDrawnButton_isDepressed(&l_userBtn1) != 0;
}
//..........................................................................*/
void BSP_paintString(uint8_t x, uint8_t y, char const *str) {
static uint8_t const font5x7[95][7] = {
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U }, //
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x00U, 0x00U, 0x04U }, // !
{ 0x0AU, 0x0AU, 0x0AU, 0x00U, 0x00U, 0x00U, 0x00U }, // "
{ 0x0AU, 0x0AU, 0x1FU, 0x0AU, 0x1FU, 0x0AU, 0x0AU }, // #
{ 0x04U, 0x1EU, 0x05U, 0x0EU, 0x14U, 0x0FU, 0x04U }, // $
{ 0x03U, 0x13U, 0x08U, 0x04U, 0x02U, 0x19U, 0x18U }, // %
{ 0x06U, 0x09U, 0x05U, 0x02U, 0x15U, 0x09U, 0x16U }, // &
{ 0x06U, 0x04U, 0x02U, 0x00U, 0x00U, 0x00U, 0x00U }, // '
{ 0x08U, 0x04U, 0x02U, 0x02U, 0x02U, 0x04U, 0x08U }, // (
{ 0x02U, 0x04U, 0x08U, 0x08U, 0x08U, 0x04U, 0x02U }, // )
{ 0x00U, 0x04U, 0x15U, 0x0EU, 0x15U, 0x04U, 0x00U }, // *
{ 0x00U, 0x04U, 0x04U, 0x1FU, 0x04U, 0x04U, 0x00U }, // +
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x04U, 0x02U }, // ,
{ 0x00U, 0x00U, 0x00U, 0x1FU, 0x00U, 0x00U, 0x00U }, // -
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x06U }, // .
{ 0x00U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x00U }, // /
{ 0x0EU, 0x11U, 0x19U, 0x15U, 0x13U, 0x11U, 0x0EU }, // 0
{ 0x04U, 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // 1
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x02U, 0x1FU }, // 2
{ 0x1FU, 0x08U, 0x04U, 0x08U, 0x10U, 0x11U, 0x0EU }, // 3
{ 0x08U, 0x0CU, 0x0AU, 0x09U, 0x1FU, 0x08U, 0x08U }, // 4
{ 0x1FU, 0x01U, 0x0FU, 0x10U, 0x10U, 0x11U, 0x0EU }, // 5
{ 0x0CU, 0x02U, 0x01U, 0x0FU, 0x11U, 0x11U, 0x0EU }, // 6
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x02U, 0x02U }, // 7
{ 0x0EU, 0x11U, 0x11U, 0x0EU, 0x11U, 0x11U, 0x0EU }, // 8
{ 0x0EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x08U, 0x06U }, // 9
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x06U, 0x00U }, // :
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x04U, 0x02U }, // ;
{ 0x08U, 0x04U, 0x02U, 0x01U, 0x02U, 0x04U, 0x08U }, // <
{ 0x00U, 0x00U, 0x1FU, 0x00U, 0x1FU, 0x00U, 0x00U }, // =
{ 0x02U, 0x04U, 0x08U, 0x10U, 0x08U, 0x04U, 0x02U }, // >
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x00U, 0x04U }, // ?
{ 0x0EU, 0x11U, 0x10U, 0x16U, 0x15U, 0x15U, 0x0EU }, // @
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U }, // A
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x11U, 0x11U, 0x0FU }, // B
{ 0x0EU, 0x11U, 0x01U, 0x01U, 0x01U, 0x11U, 0x0EU }, // C
{ 0x07U, 0x09U, 0x11U, 0x11U, 0x11U, 0x09U, 0x07U }, // D
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x1FU }, // E
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x01U }, // F
{ 0x0EU, 0x11U, 0x01U, 0x1DU, 0x11U, 0x11U, 0x1EU }, // G
{ 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U, 0x11U }, // H
{ 0x0EU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // I
{ 0x1CU, 0x08U, 0x08U, 0x08U, 0x08U, 0x09U, 0x06U }, // J
{ 0x11U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U, 0x11U }, // K
{ 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x1FU }, // L
{ 0x11U, 0x1BU, 0x15U, 0x15U, 0x11U, 0x11U, 0x11U }, // M
{ 0x11U, 0x11U, 0x13U, 0x15U, 0x19U, 0x11U, 0x11U }, // N
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, // O
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x01U, 0x01U, 0x01U }, // P
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x15U, 0x09U, 0x16U }, // Q
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x05U, 0x09U, 0x11U }, // R
{ 0x1EU, 0x01U, 0x01U, 0x0EU, 0x10U, 0x10U, 0x0FU }, // S
{ 0x1FU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, // T
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, // U
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, // V
{ 0x11U, 0x11U, 0x11U, 0x15U, 0x15U, 0x15U, 0x0AU }, // W
{ 0x11U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U, 0x11U }, // X
{ 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U, 0x04U, 0x04U }, // Y
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x1FU }, // Z
{ 0x0EU, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x0EU }, // [
{ 0x00U, 0x01U, 0x02U, 0x04U, 0x08U, 0x10U, 0x00U }, // back-slash
{ 0x0EU, 0x08U, 0x08U, 0x08U, 0x08U, 0x08U, 0x0EU }, // ]
{ 0x04U, 0x0AU, 0x11U, 0x00U, 0x00U, 0x00U, 0x00U }, // ^
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x1FU }, // _
{ 0x02U, 0x04U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, // `
{ 0x00U, 0x00U, 0x0EU, 0x10U, 0x1EU, 0x11U, 0x1EU }, // a
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x0FU }, // b
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x01U, 0x11U, 0x0EU }, // c
{ 0x10U, 0x10U, 0x16U, 0x19U, 0x11U, 0x11U, 0x1EU }, // d
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x1FU, 0x01U, 0x0EU }, // e
{ 0x0CU, 0x12U, 0x02U, 0x07U, 0x02U, 0x02U, 0x02U }, // f
{ 0x00U, 0x1EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, // g
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, // h
{ 0x04U, 0x00U, 0x06U, 0x04U, 0x04U, 0x04U, 0x0EU }, // i
{ 0x08U, 0x00U, 0x0CU, 0x08U, 0x08U, 0x09U, 0x06U }, // j
{ 0x01U, 0x01U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U }, // k
{ 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // l
{ 0x00U, 0x00U, 0x0BU, 0x15U, 0x15U, 0x11U, 0x11U }, // m
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, // n
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x11U, 0x11U, 0x0EU }, // o
{ 0x00U, 0x00U, 0x0FU, 0x11U, 0x0FU, 0x01U, 0x01U }, // p
{ 0x00U, 0x00U, 0x16U, 0x19U, 0x1EU, 0x10U, 0x10U }, // q
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x01U, 0x01U, 0x01U }, // r
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x0EU, 0x10U, 0x0FU }, // s
{ 0x02U, 0x02U, 0x07U, 0x02U, 0x02U, 0x12U, 0x0CU }, // t
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x19U, 0x16U }, // u
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, // v
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x15U, 0x15U, 0x0AU }, // w
{ 0x00U, 0x00U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U }, // x
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, // y
{ 0x00U, 0x00U, 0x1FU, 0x08U, 0x04U, 0x02U, 0x1FU }, // z
{ 0x08U, 0x04U, 0x04U, 0x02U, 0x04U, 0x04U, 0x08U }, // {
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, // |
{ 0x02U, 0x04U, 0x04U, 0x08U, 0x04U, 0x04U, 0x02U }, // }
{ 0x02U, 0x15U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, // ~
};
for (; *str != '\0'; ++str, x += 6) {
uint8_t const *ch = &font5x7[*str - ' '][0];
paintBitsClear(x, y, ch, 7);
}
}
//==========================================================================*/
typedef struct { // the auxiliary structure to hold const bitmaps
uint8_t const *bits; // the bits in the bitmap
uint8_t height; // the height of the bitmap
} Bitmap;
// bitmap of the Ship:
//
// x....
// xxx..
// xxxxx
//
static uint8_t const ship_bits[] = {
0x01U, 0x07U, 0x1FU
};
// bitmap of the Missile:
//
// xxxx
//
static uint8_t const missile_bits[] = {
0x0FU
};
// bitmap of the Mine type-1:
//
// .x.
// xxx
// .x.
//
static uint8_t const mine1_bits[] = {
0x02U, 0x07U, 0x02U
};
// bitmap of the Mine type-2:
//
// x..x
// .xx.
// .xx.
// x..x
//
static uint8_t const mine2_bits[] = {
0x09U, 0x06U, 0x06U, 0x09U
};
// Mine type-2 is nastier than Mine type-1. The type-2 mine can
// hit the Ship with any of its "tentacles". However, it can be
// destroyed by the Missile only by hitting its center, defined as
// the following bitmap:
//
// ....
// .xx.
// .xx.
//
static uint8_t const mine2_missile_bits[] = {
0x00U, 0x06U, 0x06U
};
//
// The bitmap of the explosion stage 0:
//
// .......
// ...x...
// ..x.x..
// ...x...
//
static uint8_t const explosion0_bits[] = {
0x00U, 0x08U, 0x14U, 0x08U
};
//
// The bitmap of the explosion stage 1:
//
// .......
// ..x.x..
// ...x...
// ..x.x..
//
static uint8_t const explosion1_bits[] = {
0x00U, 0x14U, 0x08U, 0x14U
};
//
// The bitmap of the explosion stage 2:
//
// .x...x.
// ..x.x..
// ...x...
// ..x.x..
// .x...x.
//
static uint8_t const explosion2_bits[] = {
0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U
};
//
// The bitmap of the explosion stage 3:
//
// x..x..x
// .x.x.x.
// ..x.x..
// xx.x.xx
// ..x.x..
// .x.x.x.
// x..x..x
//
static uint8_t const explosion3_bits[] = {
0x49, 0x2A, 0x14, 0x6B, 0x14, 0x2A, 0x49
};
static Bitmap const l_bitmap[MAX_BMP] = {
{ ship_bits, Q_DIM(ship_bits) },
{ missile_bits, Q_DIM(missile_bits) },
{ mine1_bits, Q_DIM(mine1_bits) },
{ mine2_bits, Q_DIM(mine2_bits) },
{ mine2_missile_bits, Q_DIM(mine2_missile_bits) },
{ explosion0_bits, Q_DIM(explosion0_bits) },
{ explosion1_bits, Q_DIM(explosion1_bits) },
{ explosion2_bits, Q_DIM(explosion2_bits) },
{ explosion3_bits, Q_DIM(explosion3_bits) }
};
//..........................................................................*/
void BSP_paintBitmap(uint8_t x, uint8_t y, uint8_t bmp_id) {
Bitmap const *bmp = &l_bitmap[bmp_id];
paintBits(x, y, bmp->bits, bmp->height);
}
//..........................................................................*/
void BSP_advanceWalls(uint8_t top, uint8_t bottom) {
uint_fast8_t y;
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
// shift the walls one pixel to the left
l_walls[y][0] = (l_walls[y][0] >> 1) | (l_walls[y][1] << 31);
l_walls[y][1] = (l_walls[y][1] >> 1) | (l_walls[y][2] << 31);
l_walls[y][2] = (l_walls[y][2] >> 1) | (l_walls[y][3] << 31);
l_walls[y][3] = (l_walls[y][3] >> 1);
// add new column of walls at the end
if (y <= top) {
l_walls[y][3] |= (1U << 31);
}
if (y >= (GAME_TUNNEL_HEIGHT - bottom)) {
l_walls[y][3] |= (1U << 31);
}
// copy the walls to the frame buffer
l_fb[y][0] = l_walls[y][0];
l_fb[y][1] = l_walls[y][1];
l_fb[y][2] = l_walls[y][2];
l_fb[y][3] = l_walls[y][3];
}
}
//..........................................................................*/
bool BSP_doBitmapsOverlap(uint8_t bmp_id1, uint8_t x1, uint8_t y1,
uint8_t bmp_id2, uint8_t x2, uint8_t y2)
{
uint8_t y;
uint8_t y0;
uint8_t h;
uint32_t bits1;
uint32_t bits2;
Bitmap const *bmp1;
Bitmap const *bmp2;
Q_REQUIRE((bmp_id1 < Q_DIM(l_bitmap)) && (bmp_id2 < Q_DIM(l_bitmap)));
// are the bitmaps close enough in x?
if (x1 >= x2) {
if (x1 > x2 + 8U) {
return false;
}
x1 -= x2;
x2 = 0U;
}
else {
if (x2 > x1 + 8U) {
return false;
}
x2 -= x1;
x1 = 0U;
}
bmp1 = &l_bitmap[bmp_id1];
bmp2 = &l_bitmap[bmp_id2];
if ((y1 <= y2) && (y1 + bmp1->height > y2)) {
y0 = y2 - y1;
h = y1 + bmp1->height - y2;
if (h > bmp2->height) {
h = bmp2->height;
}
for (y = 0; y < h; ++y) { // scan over the overlapping rows
bits1 = ((uint32_t)bmp1->bits[y + y0] << x1);
bits2 = ((uint32_t)bmp2->bits[y] << x2);
if ((bits1 & bits2) != 0U) { // do the bits overlap?
return true; // yes!
}
}
}
else {
if ((y1 > y2) && (y2 + bmp2->height > y1)) {
y0 = y1 - y2;
h = y2 + bmp2->height - y1;
if (h > bmp1->height) {
h = bmp1->height;
}
for (y = 0; y < h; ++y) { // scan over the overlapping rows
bits1 = ((uint32_t)bmp1->bits[y] << x1);
bits2 = ((uint32_t)bmp2->bits[y + y0] << x2);
if ((bits1 & bits2) != 0U) { // do the bits overlap?
return true; // yes!
}
}
}
}
return false; // the bitmaps do not overlap
}
//..........................................................................*/
bool BSP_isWallHit(uint8_t bmp_id, uint8_t x, uint8_t y) {
Bitmap const *bmp = &l_bitmap[bmp_id];
uint32_t shft = (x & 0x1FU);
uint32_t *walls = &l_walls[y][x >> 5];
for (y = 0; y < bmp->height; ++y, walls += (BSP_SCREEN_WIDTH >> 5)) {
if (*walls & ((uint32_t)bmp->bits[y] << shft)) {
return true;
}
if (shft > 24U) {
if (*(walls + 1) & ((uint32_t)bmp->bits[y] >> (32U - shft))) {
return true;
}
}
}
return false;
}
//..........................................................................*/
void BSP_updateScore(uint16_t score) {
uint8_t seg[5];
char str[5];
if (score == 0U) {
BSP_paintString(1U, BSP_SCREEN_HEIGHT - 8U, "SCORE:");
}
seg[0] = score % 10U; score /= 10U;
seg[1] = score % 10U; score /= 10U;
seg[2] = score % 10U; score /= 10U;
seg[3] = score % 10U;
// update the SCORE area on the screeen
str[0] = seg[3] + '0';
str[1] = seg[2] + '0';
str[2] = seg[1] + '0';
str[3] = seg[0] + '0';
str[4] = '\0';
BSP_paintString(6U*6U, BSP_SCREEN_HEIGHT - 8U, str);
// update the score in the l_scoreBoard SegmentDisplay
SegmentDisplay_setSegment(&l_scoreBoard, 0U, (UINT)seg[0]);
SegmentDisplay_setSegment(&l_scoreBoard, 1U, (UINT)seg[1]);
SegmentDisplay_setSegment(&l_scoreBoard, 2U, (UINT)seg[2]);
SegmentDisplay_setSegment(&l_scoreBoard, 3U, (UINT)seg[3]);
}
//..........................................................................*/
void BSP_displayOn(void) {
SegmentDisplay_setSegment(&l_userLED0, 0U, 1U);
}
//..........................................................................*/
void BSP_displayOff(void) {
SegmentDisplay_setSegment(&l_userLED0, 0U, 0U);
GraphicDisplay_clear(&l_lcd);
GraphicDisplay_redraw(&l_lcd);
}
//..........................................................................*/
uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
//..........................................................................*/
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
//--------------------------------------------------------------------------*/
//..........................................................................*/
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h) {
uint32_t *fb = &l_fb[y][x >> 5];
uint32_t shft = (x & 0x1FU);
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
*fb |= ((uint32_t)bits[y] << shft);
if (shft > 24U) {
*(fb + 1) |= ((uint32_t)bits[y] >> (32U - shft));
}
}
}
//..........................................................................*/
static void paintBitsClear(uint8_t x, uint8_t y,
uint8_t const *bits, uint8_t h)
{
uint32_t *fb = &l_fb[y][x >> 5];
uint32_t shft = (x & 0x1FU);
uint32_t mask1 = ~((uint32_t)0xFFU << shft);
uint32_t mask2;
if (shft > 24U) {
mask2 = ~(0xFFU >> (32U - shft));
}
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
*fb = ((*fb & mask1) | ((uint32_t)bits[y] << shft));
if (shft > 24U) {
*(fb + 1) = ((*(fb + 1) & mask2)
| ((uint32_t)bits[y] >> (32U - shft)));
}
}
}
//............................................................................
//............................................................................
extern "C" int WINAPI WinMain(HINSTANCE hInst, HINSTANCE /*hPrevInst*/,
LPSTR cmdLine, int iCmdShow)
{
l_hInst = hInst; // save the application instance
l_cmdLine = cmdLine; // save the command line string
// create the main custom dialog window
HWND hWnd = CreateCustDialog(hInst, IDD_APPLICATION, NULL,
&WndProc, "QP_APP");
ShowWindow(hWnd, iCmdShow); // show the main window
// enter the message loop...
MSG msg;
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
BSP_terminate(0);
return msg.wParam;
}
//............................................................................
static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)
{
switch (iMsg) {
// Perform initialization upon cration of the main dialog window
// NOTE: Any child-windows are NOT created yet at this time, so
// the GetDlgItem() function can't be used (it will return NULL).
//
case WM_CREATE: {
l_hWnd = hWnd; // save the window handle
// initialize the owner-drawn buttons...
// NOTE: must be done *before* the first drawing of the buttons,
// so WM_INITDIALOG is too late.
//
OwnerDrawnButton_init(&l_userBtn0, IDC_USER0,
LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)),
LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)),
LoadCursor(NULL, IDC_HAND));
OwnerDrawnButton_init(&l_userBtn1, IDC_USER1,
LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)),
LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)),
LoadCursor(NULL, IDC_HAND));
return 0;
}
// Perform initialization after all child windows have been created
case WM_INITDIALOG: {
GraphicDisplay_init(&l_lcd, 128, 128, IDC_LCD, c_offColor);
SegmentDisplay_init(&l_userLED0,
1U, // 1 "segment" (the LED0 itself)
2U); // 2 bitmaps (for LED0 OFF/ON states)
SegmentDisplay_initSegment(&l_userLED0, 0U, IDC_LED0);
SegmentDisplay_initBitmap(&l_userLED0,
0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_OFF)));
SegmentDisplay_initBitmap(&l_userLED0,
1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_ON)));
SegmentDisplay_init(&l_userLED1,
1U, // 1 "segment" (the LED1 itself)
2U); // 2 bitmaps (for LED1 OFF/ON states)
SegmentDisplay_initSegment(&l_userLED1, 0U, IDC_LED1);
SegmentDisplay_initBitmap(&l_userLED1,
0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_OFF)));
SegmentDisplay_initBitmap(&l_userLED1,
1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_ON)));
SegmentDisplay_init(&l_scoreBoard,
4U, // 4 "segments" (digits 0-3)
10U); // 10 bitmaps (for 0-9 states)
SegmentDisplay_initSegment(&l_scoreBoard, 0U, IDC_SEG0);
SegmentDisplay_initSegment(&l_scoreBoard, 1U, IDC_SEG1);
SegmentDisplay_initSegment(&l_scoreBoard, 2U, IDC_SEG2);
SegmentDisplay_initSegment(&l_scoreBoard, 3U, IDC_SEG3);
SegmentDisplay_initBitmap(&l_scoreBoard,
0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG0)));
SegmentDisplay_initBitmap(&l_scoreBoard,
1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG1)));
SegmentDisplay_initBitmap(&l_scoreBoard,
2U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG2)));
SegmentDisplay_initBitmap(&l_scoreBoard,
3U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG3)));
SegmentDisplay_initBitmap(&l_scoreBoard,
4U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG4)));
SegmentDisplay_initBitmap(&l_scoreBoard,
5U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG5)));
SegmentDisplay_initBitmap(&l_scoreBoard,
6U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG6)));
SegmentDisplay_initBitmap(&l_scoreBoard,
7U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG7)));
SegmentDisplay_initBitmap(&l_scoreBoard,
8U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG8)));
SegmentDisplay_initBitmap(&l_scoreBoard,
9U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG9)));
BSP_updateScore(0U);
// --> QP: spawn the application thread to run main_gui()
Q_ALLEGE(CreateThread(NULL, 0, &appThread, NULL, 0, NULL)
!= (HANDLE)0);
return 0;
}
case WM_DESTROY: {
OutputDebugString("DESTROY\n");
PostQuitMessage(0);
return 0;
}
// commands from regular buttons and menus...
case WM_COMMAND: {
SetFocus(hWnd);
switch (wParam) {
case IDOK:
case IDCANCEL: {
OutputDebugString("QUIT\n");
PostQuitMessage(0);
break;
}
}
return 0;
}
// owner-drawn buttons...
case WM_DRAWITEM: {
LPDRAWITEMSTRUCT pdis = (LPDRAWITEMSTRUCT)lParam;
switch (pdis->CtlID) {
case IDC_USER0: { // USER owner-drawn Button0
OutputDebugString("USER0\n");
switch (OwnerDrawnButton_draw(&l_userBtn0, pdis)) {
case BTN_DEPRESSED: {
playerTrigger();
SegmentDisplay_setSegment(&l_userLED0, 0U, 1U);
break;
}
case BTN_RELEASED: {
SegmentDisplay_setSegment(&l_userLED0, 0U, 0U);
break;
}
default: {
break;
}
}
break;
}
case IDC_USER1: { // USER owner-drawn Button1
OutputDebugString("USER1\n");
switch (OwnerDrawnButton_draw(&l_userBtn1, pdis)) {
default: {
break;
}
}
break;
}
}
return 0;
}
// mouse wheel input...
case WM_MOUSEWHEEL: {
OutputDebugString("MOUSEWHEEL\n");
return 0;
}
// keyboard input...
case WM_KEYDOWN: {
OutputDebugString("KEYDOWN\n");
switch (wParam) {
case VK_SPACE:
playerTrigger();
OwnerDrawnButton_set(&l_userBtn0, 1);
break;
}
return 0;
}
case WM_KEYUP: {
OutputDebugString("KEYUP\n");
switch (wParam) {
case VK_SPACE:
OwnerDrawnButton_set(&l_userBtn0, 0);
break;
}
return 0;
}
}
return DefWindowProc(hWnd, iMsg, wParam, lParam);
}
//..........................................................................*/
static void playerTrigger(void) {
static QP::QEvt const fireEvt = { PLAYER_TRIGGER_SIG, 0U, 0U };
QP::QF::PUBLISH(&fireEvt, static_cast<void *>(0));
}
} // namespace GAME
///***************************************************************************
namespace QP {
//............................................................................
void QF::onStartup(void) {
QF_setTickRate(GAME::BSP_TICKS_PER_SEC); // set the desired tick rate
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QF_onClockTick(void) {
static QP::QEvt const tickEvt = QEVT_INITIALIZER(GAME::TIME_TICK_SIG);
//QP::QF::TICK_X(0U, &GAME::l_clock_tick); // process time events at rate 0
GAME::the_Ticker0->POST(0, 0); // post a don't-care event to Ticker0
QP::QF::PUBLISH(&tickEvt, &GAME::l_clock_tick); // publish the tick event
}
//............................................................................
extern "C" void Q_onAssert(char const * const module, int loc) {
QF::stop(); // stop ticking
QS_ASSERTION(module, loc, 10000U); // report assertion to QS
char message[80];
SNPRINTF_S(message, Q_DIM(message) - 1,
"Assertion failed in module %s location %d", module, loc);
MessageBox(GAME::l_hWnd, message, "!!! ASSERTION !!!",
MB_OK | MB_ICONEXCLAMATION | MB_APPLMODAL);
PostQuitMessage(-1);
}
//----------------------------------------------------------------------------
#ifdef Q_SPY // define QS callbacks
#include <time.h>
// In this demo, the QS software tracing output is sent out of the application
// through a TCP/IP socket. This requires the QSPY host application to
// be started first to open a server socket (qspy -t ...) to wait for the
// incoming TCP/IP connection from the GAME demo.
//
// In an embedded target, the QS software tracing output can be sent out
// using any method available, such as a UART. This would require changing
// the implementation of the functions in this section, but the rest of the
// application code does not "know" (and should not care) how the QS ouptut
// is actually performed. In other words, the rest of the application does NOT
// need to change in any way to produce QS output.
//............................................................................
extern "C" DWORD WINAPI idleThread(LPVOID par) { // signature for CreateThread()
(void)par;
while (GAME::l_sock != INVALID_SOCKET) {
uint8_t const *block;
// try to receive bytes from the QS socket...
uint16_t nBytes = QS::rxGetNfree();
if (nBytes > 0U) {
uint8_t buf[64];
int status;
if (nBytes > sizeof(buf)) {
nBytes = sizeof(buf);
}
status = recv(GAME::l_sock, reinterpret_cast<char *>(&buf[0]),
static_cast<int>(nBytes), 0);
if (status != SOCKET_ERROR) {
uint16_t i;
nBytes = static_cast<uint16_t>(status);
for (i = 0U; i < nBytes; ++i) {
QS::rxPut(buf[i]);
}
}
}
QS::rxParse(); // parse all the received bytes
nBytes = 1024U;
QF_CRIT_ENTRY(dummy);
block = QS::getBlock(&nBytes);
QF_CRIT_EXIT(dummy);
if (block != static_cast<uint8_t *>(0)) {
send(GAME::l_sock, reinterpret_cast<char const *>(block),
static_cast<int_t>(nBytes), 0);
}
Sleep(20); // sleep for xx milliseconds
}
return (DWORD)0; // return success
}
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[1024]; // buffer for QS output
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
static WSADATA wsaData;
char hostName[64];
char const *src;
char *dst;
USHORT port = 6601; // default QSPY server port
ULONG ioctl_opt = 1;
struct sockaddr_in sockAddr;
struct hostent *server;
initBuf(qsBuf, sizeof(qsBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// initialize Windows sockets
if (WSAStartup(MAKEWORD(2,0), &wsaData) == SOCKET_ERROR) {
printf("Windows Sockets cannot be initialized.");
return (uint8_t)0;
}
src = (arg != (void const *)0)
? (char const *)arg
: "localhost";
dst = hostName;
while ((*src != '\0')
&& (*src != ':')
&& (dst < &hostName[sizeof(hostName)]))
{
*dst++ = *src++;
}
*dst = '\0';
if (*src == ':') {
port = (USHORT)strtoul(src + 1, NULL, 10);
}
GAME::l_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); // TCP socket
if (GAME::l_sock == INVALID_SOCKET){
printf("Socket cannot be created; error 0x%08X\n",
WSAGetLastError());
return false; // failure
}
server = gethostbyname(hostName);
if (server == NULL) {
printf("QSpy host name %s cannot be resolved; error 0x%08X\n",
hostName, WSAGetLastError());
return false;
}
memset(&sockAddr, 0, sizeof(sockAddr));
sockAddr.sin_family = AF_INET;
memcpy(&sockAddr.sin_addr, server->h_addr, server->h_length);
sockAddr.sin_port = htons(port);
if (connect(GAME::l_sock, reinterpret_cast<struct sockaddr *>(&sockAddr),
sizeof(sockAddr)) == SOCKET_ERROR)
{
printf("Cannot connect to the QSPY server; error 0x%08X\n",
WSAGetLastError());
QS_EXIT();
return false; // failure
}
// Set the socket to non-blocking mode.
if (ioctlsocket(GAME::l_sock, FIONBIO, &ioctl_opt) == SOCKET_ERROR) {
printf("Socket configuration failed.\n"
"Windows socket error 0x%08X.",
WSAGetLastError());
QS_EXIT();
return false; // failure
}
// set up the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(QS_QF_ACTIVE_POST_FIFO);
QS_FILTER_ON(QS_QF_ACTIVE_POST_LIFO);
QS_FILTER_ON(QS_QF_PUBLISH);
QS_FILTER_ON(GAME::PLAYER_TRIGGER);
QS_FILTER_ON(GAME::COMMAND_STAT);
// return the status of creating the idle thread
return (CreateThread(NULL, 1024, &idleThread, NULL, 0, NULL) != NULL)
? true : false;
}
//............................................................................
void QS::onCleanup(void) {
if (GAME::l_sock != INVALID_SOCKET) {
closesocket(GAME::l_sock);
GAME::l_sock = INVALID_SOCKET;
}
WSACleanup();
}
//............................................................................
void QS::onFlush(void) {
uint16_t nBytes = 1000U;
uint8_t const *block;
while ((block = getBlock(&nBytes)) != static_cast<uint8_t *>(0)) {
send(GAME::l_sock, reinterpret_cast<char const *>(block), nBytes, 0);
nBytes = 1000U;
}
}
//............................................................................
QSTimeCtr QS::onGetTime(void) {
return static_cast<QSTimeCtr>(clock());
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
//TBD
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
// application-specific record
QS_BEGIN(GAME::COMMAND_STAT, static_cast<void *>(0))
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_END()
if (cmdId == 10U) {
Q_onAssert("QS::onCommand", 10);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP