mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-28 06:02:56 +08:00
415 lines
14 KiB
C++
415 lines
14 KiB
C++
///***************************************************************************
|
|
// Product: DPP example, EK-TM4C123GXL board, uC/OS-II kernel
|
|
// Last updated for version 5.9.5
|
|
// Last updated on 2017-07-20
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ---------------------------
|
|
// innovating embedded systems
|
|
//
|
|
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
//
|
|
// This program is open source software: you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Alternatively, this program may be distributed and modified under the
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
// the GNU General Public License and are specifically designed for
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// Contact information:
|
|
// https://state-machine.com
|
|
// mailto:info@state-machine.com
|
|
//****************************************************************************
|
|
#include "qpcpp.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "TM4C123GH6PM.h" // the device specific header (TI)
|
|
#include "rom.h" // the built-in ROM functions (TI)
|
|
#include "sysctl.h" // system control driver (TI)
|
|
#include "gpio.h" // GPIO driver (TI)
|
|
// add other drivers if necessary...
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
// namespace DPP *************************************************************
|
|
namespace DPP {
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
#define LED_RED (1U << 1)
|
|
#define LED_GREEN (1U << 3)
|
|
#define LED_BLUE (1U << 2)
|
|
|
|
#define BTN_SW1 (1U << 4)
|
|
#define BTN_SW2 (1U << 0)
|
|
|
|
static uint32_t l_rnd; // random seed
|
|
OS_EVENT *l_rndMutex; // to protect the random number generator
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QP::QSTimeCtr QS_tickTime_;
|
|
QP::QSTimeCtr QS_tickPeriod_;
|
|
|
|
// source IDs for QS for non-QP event producers
|
|
static uint8_t const l_tickHook = 0U;
|
|
static uint8_t const l_GPIOPortA_IRQHandler = 0U;
|
|
|
|
#define UART_BAUD_RATE 115200U
|
|
#define UART_FR_TXFE 0x80U
|
|
#define UART_TXFIFO_DEPTH 16U
|
|
|
|
enum AppRecords { // application-specific trace records
|
|
PHILO_STAT = QP::QS_USER
|
|
};
|
|
|
|
#endif
|
|
|
|
// ISRs used in this project =================================================
|
|
extern "C" {
|
|
|
|
// example ISR handler for uCOS-II
|
|
void GPIOPortA_IRQHandler(void);
|
|
void GPIOPortA_IRQHandler(void) {
|
|
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
|
|
OS_CPU_SR cpu_sr;
|
|
#endif
|
|
|
|
OS_ENTER_CRITICAL();
|
|
OSIntEnter(); // Tell uC/OS-II that we are starting an ISR
|
|
OS_EXIT_CRITICAL();
|
|
|
|
// perform the application work...
|
|
AO_Table->POST(Q_NEW(QP::QEvt, MAX_SIG), // for testing...
|
|
&l_GPIOPortA_IRQHandler);
|
|
|
|
OSIntExit(); // Tell uC/OS-II that we are leaving the ISR
|
|
}
|
|
|
|
|
|
// uCOS-II application hooks --===============================================
|
|
void App_TaskCreateHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
void App_TaskDelHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
//............................................................................
|
|
void App_TaskIdleHook(void) {
|
|
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
|
|
OS_CPU_SR cpu_sr;
|
|
#endif
|
|
|
|
// toggle LED2 on and then off, see NOTE01
|
|
OS_ENTER_CRITICAL();
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn the LED on
|
|
GPIOF->DATA_Bits[LED_BLUE] = 0x00U; // turn the LED off
|
|
OS_EXIT_CRITICAL();
|
|
|
|
#ifdef Q_SPY
|
|
if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done?
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
|
|
uint8_t const *block;
|
|
|
|
OS_EXIT_CRITICAL();
|
|
block = QP::QS::getBlock(&fifo); // try to get next block to transmit
|
|
OS_EXIT_CRITICAL();
|
|
|
|
while (fifo-- != 0) { // any bytes in the block?
|
|
UART0->DR = *block++; // put into the FIFO
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
// you might need to customize the clock management for your application,
|
|
// see the datasheet for your particular Cortex-M3 MCU.
|
|
//
|
|
__WFI(); // Wait-For-Interrupt
|
|
#endif
|
|
}
|
|
//............................................................................
|
|
void App_TaskReturnHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
void App_TaskStatHook (void) {}
|
|
void App_TaskSwHook (void) {}
|
|
void App_TCBInitHook (OS_TCB *ptcb) { (void)ptcb; }
|
|
//............................................................................
|
|
void App_TimeTickHook(void) {
|
|
uint32_t tmp;
|
|
|
|
#ifdef Q_SPY
|
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
|
#endif
|
|
|
|
QP::QF::TICK_X(0U, &l_tickHook); // process time events for rate 0
|
|
|
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
// and Michael Barr, page 71.
|
|
//
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U }; // state of the button debouncing
|
|
|
|
uint32_t current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 & SW2
|
|
tmp = buttons.depressed; // save the debounced depressed buttons
|
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
|
buttons.depressed &= (buttons.previous | current); // clear released
|
|
buttons.previous = current; // update the history
|
|
tmp ^= buttons.depressed; // changed debounced depressed
|
|
if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed?
|
|
if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed?
|
|
static QP::QEvt const pauseEvt = { PAUSE_SIG, 0U, 0U};
|
|
QP::QF::PUBLISH(&pauseEvt, &l_tickHook);
|
|
}
|
|
else { // the button is released
|
|
static QP::QEvt const serveEvt = { SERVE_SIG, 0U, 0U};
|
|
QP::QF::PUBLISH(&serveEvt, &l_tickHook);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
// BSP functions =============================================================
|
|
void BSP::init(void) {
|
|
// NOTE: SystemInit() already called from the startup code
|
|
// but SystemCoreClock needs to be updated
|
|
//
|
|
SystemCoreClockUpdate();
|
|
|
|
// enable clock for to the peripherals used by this application...
|
|
SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF
|
|
|
|
// configure the LEDs and push buttons
|
|
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output
|
|
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
|
|
GPIOF->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0U; // turn the LEDs off
|
|
|
|
// configure the Buttons
|
|
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input
|
|
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
|
|
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
|
|
|
|
BSP::randomSeed(1234U);
|
|
|
|
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_tickHook);
|
|
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
|
|
}
|
|
//............................................................................
|
|
void BSP::displayPhilStat(uint8_t n, char const *stat) {
|
|
// exercise the FPU with some floating point computations
|
|
// NOTE: this code can be only called from a task that created with
|
|
// the option OS_TASK_OPT_SAVE_FP.
|
|
//
|
|
float volatile x;
|
|
x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
GPIOF->DATA_Bits[LED_GREEN] =
|
|
((stat[0] == 'e') // Is Philo[n] eating?
|
|
? 0xFFU // turn the LED1 on
|
|
: 0U); // turn the LED1 off
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
|
|
QS_U8(1, n); // Philosopher number
|
|
QS_STR(stat); // Philosopher status
|
|
QS_END()
|
|
}
|
|
//............................................................................
|
|
void BSP::displayPaused(uint8_t paused) {
|
|
GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? 0xFFU : 0U);
|
|
}
|
|
//............................................................................
|
|
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
|
|
INT8U err;
|
|
|
|
OSMutexPend(l_rndMutex, 0, &err); // lock the random-seed mutex
|
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
//
|
|
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
l_rnd = rnd; // set for the next time
|
|
OSMutexPost(l_rndMutex); // unlock the random-seed mutex
|
|
|
|
return (rnd >> 8);
|
|
}
|
|
//............................................................................
|
|
void BSP::randomSeed(uint32_t seed) {
|
|
INT8U err;
|
|
|
|
l_rnd = seed;
|
|
l_rndMutex = OSMutexCreate(N_PHILO, &err);
|
|
}
|
|
//............................................................................
|
|
void BSP::terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
} // namespace DPP
|
|
|
|
|
|
// namespace QP **************************************************************
|
|
namespace QP {
|
|
|
|
// QF callbacks ==============================================================
|
|
void QF::onStartup(void) {
|
|
// initialize the system clock tick...
|
|
OS_CPU_SysTickInit(SystemCoreClock / OS_TICKS_PER_SEC);
|
|
|
|
// set priorities of the ISRs used in the system
|
|
NVIC_SetPriority(GPIOA_IRQn, 0xFFU);
|
|
// ...
|
|
|
|
// enable IRQs in the NVIC...
|
|
NVIC_EnableIRQ(GPIOA_IRQn);
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup(void) {
|
|
}
|
|
|
|
//............................................................................
|
|
extern "C" void Q_onAssert(char const *module, int loc) {
|
|
//
|
|
// NOTE: add here your application-specific error handling
|
|
//
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
|
|
|
#ifndef NDEBUG
|
|
// light all both LEDs
|
|
GPIOF->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0xFFU;
|
|
// for debugging, hang on in an endless loop until SW1 is pressed...
|
|
while (GPIOF->DATA_Bits[BTN_SW1] != 0) {
|
|
}
|
|
#endif
|
|
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
// QS callbacks ==============================================================
|
|
#ifdef Q_SPY
|
|
//............................................................................
|
|
bool QS::onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy
|
|
uint32_t tmp;
|
|
initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
// enable clock for UART0 and GPIOA (used by UART0 pins)
|
|
SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0
|
|
SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA
|
|
|
|
// configure UART0 pins for UART operation
|
|
tmp = (1U << 0) | (1U << 1);
|
|
GPIOA->DIR &= ~tmp;
|
|
GPIOA->AFSEL |= tmp;
|
|
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
|
|
GPIOA->SLR &= ~tmp;
|
|
GPIOA->ODR &= ~tmp;
|
|
GPIOA->PUR &= ~tmp;
|
|
GPIOA->PDR &= ~tmp;
|
|
GPIOA->DEN |= tmp;
|
|
|
|
// configure the UART for the desired baud rate, 8-N-1 operation
|
|
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
|
|
UART0->IBRD = tmp / 64U;
|
|
UART0->FBRD = tmp % 64U;
|
|
UART0->LCRH = 0x60U; // configure 8-N-1 operation
|
|
UART0->LCRH |= 0x10U;
|
|
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
|
|
|
|
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
|
|
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
|
|
|
|
// setup the QS filters...
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(DPP::PHILO_STAT);
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
|
|
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
|
|
}
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
|
|
- static_cast<QSTimeCtr>(SysTick->VAL);
|
|
}
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
|
|
uint8_t const *block;
|
|
#if OS_CRITICAL_METHOD == 3u // Allocate storage for CPU status register
|
|
OS_CPU_SR cpu_sr = 0u;
|
|
#endif
|
|
|
|
OS_ENTER_CRITICAL();
|
|
while ((block = getBlock(&fifo)) != static_cast<uint8_t *>(0)) {
|
|
OS_EXIT_CRITICAL();
|
|
// busy-wait until TX FIFO empty
|
|
while ((UART0->FR & UART_FR_TXFE) == 0U) {
|
|
}
|
|
|
|
while (fifo-- != 0U) { // any bytes in the block?
|
|
UART0->DR = *block++; // put into the TX FIFO
|
|
}
|
|
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
|
|
OS_ENTER_CRITICAL();
|
|
}
|
|
OS_EXIT_CRITICAL();
|
|
}
|
|
//............................................................................
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
void QS::onReset(void) {
|
|
//TBD
|
|
}
|
|
//............................................................................
|
|
//! callback function to execute a user command (to be implemented in BSP)
|
|
void QS::onCommand(uint8_t cmdId, uint32_t param1,
|
|
uint32_t param2, uint32_t param3)
|
|
{
|
|
(void)cmdId;
|
|
(void)param1;
|
|
(void)param2;
|
|
(void)param3;
|
|
//TBD
|
|
}
|
|
#endif // Q_SPY
|
|
//----------------------------------------------------------------------------
|
|
|
|
} // namespace QP
|
|
|
|
//****************************************************************************
|
|
// NOTE01:
|
|
// The User LED is used to visualize the idle loop activity. The brightness
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
// execution time contributes to the brightness of the User LED.
|
|
//
|