qpcpp/ports/posix-qv/qf_port.cpp
MMS 3c6202e50d 6.9.3a
Modified the "posix" ports to clear the automatic sig_act struct before use
2021-06-29 12:22:20 -04:00

357 lines
14 KiB
C++

/// @file
/// @brief QF/C++ port to POSIX API (single-threaded, like QV kernel)
/// @cond
///***************************************************************************
/// Last updated for version 6.9.4
/// Last updated on 2021-06-17
///
/// Q u a n t u m L e a P s
/// ------------------------
/// Modern Embedded Software
///
/// Copyright (C) 2005-2021 Quantum Leaps. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <www.gnu.org/licenses>.
///
/// Contact information:
/// <www.state-machine.com/licensing>
/// <info@state-machine.com>
///***************************************************************************
/// @endcond
///
// expose features from the 2008 POSIX standard (IEEE Standard 1003.1-2008)
#define _POSIX_C_SOURCE 200809L
#define QP_IMPL // this is QP implementation
#include "qf_port.hpp" // QF port
#include "qf_pkg.hpp" // QF package-scope interface
#include "qassert.h" // QP embedded systems-friendly assertions
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.hpp" // QS port
#include "qs_pkg.hpp" // QS package-scope internal interface
#else
#include "qs_dummy.hpp" // disable the QS software tracing
#endif // Q_SPY
#include <limits.h> // for PTHREAD_STACK_MIN
#include <sys/mman.h> // for mlockall()
#include <sys/select.h>
#include <sys/ioctl.h>
#include <string.h> // for memcpy() and memset()
#include <stdlib.h>
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include <signal.h>
namespace QP {
Q_DEFINE_THIS_MODULE("qf_port")
/* Global objects ==========================================================*/
QPSet QV_readySet_; // QV-ready set of active objects
pthread_cond_t QV_condVar_; // Cond.var. to signal events
// Local objects *************************************************************
static pthread_mutex_t l_pThreadMutex; // POSIX mutex for the QF crit. section
static bool l_isRunning; // flag indicating when QF is running
static struct termios l_tsav; // structure with saved terminal attributes
static struct timespec l_tick;
static int_t l_tickPrio;
enum { NANOSLEEP_NSEC_PER_SEC = 1000000000 }; // see NOTE05
static void *ticker_thread(void *arg);
static void sigIntHandler(int /* dummy */);
//****************************************************************************
void QF::init(void) {
// lock memory so we're never swapped out to disk
//mlockall(MCL_CURRENT | MCL_FUTURE); // uncomment when supported
// init the global mutex with the default non-recursive initializer
pthread_mutex_init(&l_pThreadMutex, NULL);
// init the global condition variable with the default initializer
pthread_cond_init(&QV_condVar_, NULL);
l_tick.tv_sec = 0;
l_tick.tv_nsec = NANOSLEEP_NSEC_PER_SEC/100L; // default clock tick
l_tickPrio = sched_get_priority_min(SCHED_FIFO); // default tick prio
// install the SIGINT (Ctrl-C) signal handler
struct sigaction sig_act;
memset(&sig_act, 0, sizeof(sig_act));
sig_act.sa_handler = &sigIntHandler;
sigaction(SIGINT, &sig_act, NULL);
}
//****************************************************************************
void QF_enterCriticalSection_(void) {
pthread_mutex_lock(&l_pThreadMutex);
}
//****************************************************************************
void QF_leaveCriticalSection_(void) {
pthread_mutex_unlock(&l_pThreadMutex);
}
//****************************************************************************
int_t QF::run(void) {
onStartup(); // application-specific startup callback
l_isRunning = true; // QF is running
// system clock tick configured?
if ((l_tick.tv_sec != 0) || (l_tick.tv_nsec != 0)) {
pthread_attr_t attr;
pthread_attr_init(&attr);
// SCHED_FIFO corresponds to real-time preemptive priority-based
// scheduler.
// NOTE: This scheduling policy requires the superuser priviledges
//
pthread_attr_setschedpolicy (&attr, SCHED_FIFO);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
struct sched_param param;
param.sched_priority = sched_get_priority_min(SCHED_FIFO);
pthread_attr_setschedparam(&attr, &param);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_t ticker;
int err = pthread_create(&ticker, &attr, &ticker_thread, 0);
if (err != 0) {
// Creating the p-thread with the SCHED_FIFO policy failed.
// Most probably this application has no superuser privileges,
// so we just fall back to the default SCHED_OTHER policy
// and priority 0.
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
param.sched_priority = 0;
pthread_attr_setschedparam(&attr, &param);
err = pthread_create(&ticker, &attr, &ticker_thread, 0);
}
Q_ASSERT_ID(310, err == 0); /* ticker thread must be created */
//pthread_attr_getschedparam(&attr, &param);
//printf("param.sched_priority==%d\n", param.sched_priority);
pthread_attr_destroy(&attr);
}
// the combined event-loop and background-loop of the QV kernel */
QF_CRIT_STAT_
QF_CRIT_E_();
// produce the QS_QF_RUN trace record
QS_BEGIN_NOCRIT_PRE_(QS_QF_RUN, 0U)
QS_END_NOCRIT_PRE_()
while (l_isRunning) {
if (QV_readySet_.notEmpty()) {
std::uint_fast8_t p = QV_readySet_.findMax();
QActive *a = active_[p];
QF_CRIT_X_();
// the active object 'a' must still be registered in QF
// (e.g., it must not be stopped)
Q_ASSERT_ID(320, a != nullptr);
// perform the run-to-completion (RTS) step...
// 1. retrieve the event from the AO's event queue, which by this
// time must be non-empty and The "Vanialla" kernel asserts it.
// 2. dispatch the event to the AO's state machine.
// 3. determine if event is garbage and collect it if so
//
QEvt const *e = a->get_();
a->dispatch(e, a->m_prio);
gc(e);
QF_CRIT_E_();
if (a->m_eQueue.isEmpty()) { /* empty queue? */
QV_readySet_.rmove(p);
}
}
else {
// the QV kernel in embedded systems calls here the QV_onIdle()
// callback. However, the POSIX-QV port does not do busy-waiting
// for events. Instead, the POSIX-QV port efficiently waits until
// QP events become available.
//
while (QV_readySet_.isEmpty()) {
pthread_cond_wait(&QV_condVar_, &l_pThreadMutex);
}
}
}
QF_CRIT_X_();
onCleanup(); // cleanup callback
QS_EXIT(); // cleanup the QSPY connection
pthread_cond_destroy(&QV_condVar_); // cleanup the condition variable
pthread_mutex_destroy(&l_pThreadMutex); // cleanup the global mutex
return 0; // return success
}
//****************************************************************************
void QF_setTickRate(std::uint32_t ticksPerSec, int_t tickPrio) {
if (ticksPerSec != 0U) {
l_tick.tv_nsec = NANOSLEEP_NSEC_PER_SEC / ticksPerSec;
}
else {
l_tick.tv_nsec = 0; /* means NO system clock tick */
}
l_tickPrio = tickPrio;
}
//............................................................................
void QF::stop(void) {
l_isRunning = false; // terminate the main event-loop thread
// unblock the event-loop so it can terminate
QV_readySet_.insert(1);
pthread_cond_signal(&QV_condVar_);
}
//............................................................................
void QF_consoleSetup(void) {
struct termios tio; // modified terminal attributes
tcgetattr(0, &l_tsav); // save the current terminal attributes
tcgetattr(0, &tio); // obtain the current terminal attributes
tio.c_lflag &= ~(ICANON | ECHO); // disable the canonical mode & echo
tcsetattr(0, TCSANOW, &tio); // set the new attributes
}
//............................................................................
void QF_consoleCleanup(void) {
tcsetattr(0, TCSANOW, &l_tsav); // restore the saved attributes
}
//............................................................................
int QF_consoleGetKey(void) {
int byteswaiting;
ioctl(0, FIONREAD, &byteswaiting);
if (byteswaiting > 0) {
char ch;
(void)read(0, &ch, 1);
return (int)ch;
}
return 0; // no input at this time
}
/*..........................................................................*/
int QF_consoleWaitForKey(void) {
return getchar();
}
//****************************************************************************
void QActive::start(std::uint_fast8_t const prio,
QEvt const * * const qSto, std::uint_fast16_t const qLen,
void * const stkSto, std::uint_fast16_t const stkSize,
void const * const par)
{
(void)stkSize; // unused paramteter in the POSIX port
Q_REQUIRE_ID(600, (0U < prio) /* priority...*/
&& (prio <= QF_MAX_ACTIVE) /*.. in range */
&& (stkSto == nullptr)); // statck storage must NOT...
// ... be provided
m_eQueue.init(qSto, qLen);
m_prio = static_cast<std::uint8_t>(prio); // set the QF prio of this AO
QF::add_(this); // make QF aware of this AO
this->init(par, m_prio); // execute initial transition (virtual call)
QS_FLUSH(); // flush the QS trace buffer to the host
}
//............................................................................
#ifdef QF_ACTIVE_STOP
void QActive::stop(void) {
unsubscribeAll(); // unsubscribe from all events
// make sure the AO is no longer in "ready set"
QF_CRIT_STAT_
QF_CRIT_E_();
QV_readySet_.rmove(m_prio);
QF_CRIT_X_();
QF::remove_(this); // remove this AO from QF
}
#endif
//****************************************************************************
static void *ticker_thread(void * /*arg*/) { // for pthread_create()
while (l_isRunning) { // the clock tick loop...
nanosleep(&l_tick, NULL); // sleep for the number of ticks, NOTE05
QF_onClockTick(); // clock tick callback (must call QF_TICK_X())
}
return nullptr; // return success
}
//****************************************************************************
static void sigIntHandler(int /* dummy */) {
QF::onCleanup();
exit(-1);
}
} // namespace QP
//****************************************************************************
// NOTE01:
// In Linux, the scheduler policy closest to real-time is the SCHED_FIFO
// policy, available only with superuser privileges. QF::run() attempts to set
// this policy as well as to maximize its priority, so that the ticking
// occurrs in the most timely manner (as close to an interrupt as possible).
// However, setting the SCHED_FIFO policy might fail, most probably due to
// insufficient privileges.
//
// NOTE02:
// On some Linux systems nanosleep() might actually not deliver the finest
// time granularity. For example, on some Linux implementations, nanosleep()
// could not block for shorter intervals than 20ms, while the underlying
// clock tick period was only 10ms. Sometimes, the select() system call can
// provide a finer granularity.
//
// NOTE03:
// Any blocking system call, such as nanosleep() or select() system call can
// be interrupted by a signal, such as ^C from the keyboard. In this case this
// QF port breaks out of the event-loop and returns to main() that exits and
// terminates all spawned p-threads.
//
// NOTE04:
// According to the man pages (for pthread_attr_setschedpolicy) the only value
// supported in the Linux p-threads implementation is PTHREAD_SCOPE_SYSTEM,
// meaning that the threads contend for CPU time with all processes running on
// the machine. In particular, thread priorities are interpreted relative to
// the priorities of all other processes on the machine.
//
// This is good, because it seems that if we set the priorities high enough,
// no other process (or thread running within) can gain control over the CPU.
//
// However, QF limits the number of priority levels to QF_MAX_ACTIVE.
// Assuming that a QF application will be real-time, this port reserves the
// three highest p-thread priorities for the ISR-like threads (e.g., I/O),
// and the rest highest-priorities for the active objects.
//
// NOTE05:
// In some (older) Linux kernels, the POSIX nanosleep() system call might
// deliver only 2*actual-system-tick granularity. To compensate for this,
// you would need to reduce the constant NANOSLEEP_NSEC_PER_SEC by factor 2.
//