mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-28 06:02:56 +08:00
545 lines
20 KiB
C++
545 lines
20 KiB
C++
///***************************************************************************
|
|
// Product: DPP example, NXP mbed-LPC1768 board, preemptive QK kernel
|
|
// Last updated for version 5.9.5
|
|
// Last updated on 2017-07-20
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ---------------------------
|
|
// innovating embedded systems
|
|
//
|
|
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
//
|
|
// This program is open source software: you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Alternatively, this program may be distributed and modified under the
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
// the GNU General Public License and are specifically designed for
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// Contact information:
|
|
// https://state-machine.com
|
|
// mailto:info@state-machine.com
|
|
//****************************************************************************
|
|
#include "qpcpp.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "LPC17xx.h" // CMSIS-compliant header file for the MCU used
|
|
// add other drivers if necessary...
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
// namespace DPP *************************************************************
|
|
namespace DPP {
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
//
|
|
enum KernelUnawareISRs { // see NOTE00
|
|
// ...
|
|
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
|
|
};
|
|
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
|
|
|
|
enum KernelAwareISRs {
|
|
EINT0_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
|
|
SYSTICK_PRIO,
|
|
// ...
|
|
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
|
|
};
|
|
// "kernel-aware" interrupts should not overlap the PendSV priority
|
|
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
// LEDs available on the board
|
|
#define LED_1 (1U << 18) // P1.18
|
|
#define LED_2 (1U << 20) // P1.20
|
|
#define LED_3 (1U << 21) // P1.21
|
|
#define LED_4 (1U << 23) // P1.23
|
|
|
|
// Push-Button wired externally to DIP8 (P0.6)
|
|
#define BTN_EXT (1U << 6) // P0.6
|
|
|
|
static unsigned l_rnd; // random seed
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QP::QSTimeCtr QS_tickTime_;
|
|
QP::QSTimeCtr QS_tickPeriod_;
|
|
|
|
// event-source identifiers used for tracing
|
|
static uint8_t const l_SysTick_Handler = 0U;
|
|
static uint8_t const l_EINT0_IRQHandler = 0U;
|
|
|
|
#define UART_BAUD_RATE 115200U
|
|
#define UART_FR_TXFE 0x80U
|
|
#define UART_TXFIFO_DEPTH 16U
|
|
|
|
enum AppRecords { // application-specific trace records
|
|
PHILO_STAT = QP::QS_USER
|
|
};
|
|
|
|
#endif
|
|
|
|
// ISRs used in this project =================================================
|
|
extern "C" {
|
|
|
|
//............................................................................
|
|
void SysTick_Handler(void); // prototype
|
|
void SysTick_Handler(void) {
|
|
// state of the button debouncing, see below
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { ~0U, ~0U };
|
|
uint32_t current;
|
|
uint32_t tmp;
|
|
|
|
QK_ISR_ENTRY(); // inform QK about entering an ISR
|
|
|
|
#ifdef Q_SPY
|
|
{
|
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
|
}
|
|
#endif
|
|
|
|
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
|
|
|
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
// and Michael Barr, page 71.
|
|
//
|
|
current = ~LPC_GPIO0->FIOPIN; // read P0 with the state of the Buttons
|
|
tmp = buttons.depressed; // save the debounced depressed buttons
|
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
|
buttons.depressed &= (buttons.previous | current); // clear released
|
|
buttons.previous = current; // update the history
|
|
tmp ^= buttons.depressed; // changed debounced depressed
|
|
if ((tmp & BTN_EXT) != 0U) { // debounced BTN_EXT state changed?
|
|
if ((buttons.depressed & BTN_EXT) != 0U) { // is BTN_EXT depressed?
|
|
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
|
|
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
|
|
}
|
|
else { // the button is released
|
|
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
|
|
QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
|
|
QK_ISR_EXIT(); // inform QK about exiting an ISR
|
|
}
|
|
//............................................................................
|
|
void EINT0_IRQHandler(void); // prototype
|
|
void EINT0_IRQHandler(void) {
|
|
QK_ISR_ENTRY(); // inform QK about entering an ISR
|
|
|
|
// for testing..
|
|
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG),
|
|
&l_EINT0_IRQHandler);
|
|
|
|
QK_ISR_EXIT(); // inform QK about exiting an ISR
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
// BSP functions =============================================================
|
|
void BSP::init(void) {
|
|
// NOTE: SystemInit() already called from the startup code
|
|
// but SystemCoreClock needs to be updated
|
|
//
|
|
SystemCoreClockUpdate();
|
|
|
|
// turn the GPIO clock on
|
|
LPC_SC->PCONP |= (1U << 15);
|
|
|
|
// setup the GPIO pin functions for the LEDs...
|
|
LPC_PINCON->PINSEL3 &= ~(3U << 4); // LED_1: function P1.18 to GPIO
|
|
LPC_PINCON->PINSEL3 &= ~(3U << 8); // LED_2: function P1.20 to GPIO
|
|
LPC_PINCON->PINSEL3 &= ~(3U << 10); // LED_3: function P1.21 to GPIO
|
|
LPC_PINCON->PINSEL3 &= ~(3U << 14); // LED_4: function P1.23 to GPIO
|
|
|
|
// Set GPIO-P1 LED pins to output
|
|
LPC_GPIO1->FIODIR |= (LED_1 | LED_2 | LED_3 | LED_4);
|
|
|
|
|
|
// setup the GPIO pin function for the Button...
|
|
LPC_PINCON->PINSEL0 &= ~(3U << 12); // function P0.6 to GPIO, pull-up
|
|
|
|
// Set GPIO-P0 Button pin as input
|
|
LPC_GPIO0->FIODIR &= ~BTN_EXT;
|
|
|
|
BSP::randomSeed(1234U);
|
|
|
|
if (QS_INIT((void *)0) == 0U) { // initialize the QS software tracing
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
QS_OBJ_DICTIONARY(&l_EINT0_IRQHandler);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
}
|
|
//............................................................................
|
|
void BSP::displayPhilStat(uint8_t n, char const *stat) {
|
|
if (stat[0] == 'h') {
|
|
LPC_GPIO1->FIOSET = LED_1; // turn LED on
|
|
}
|
|
else {
|
|
LPC_GPIO1->FIOCLR = LED_1; // turn LED off
|
|
}
|
|
if (stat[0] == 'e') {
|
|
LPC_GPIO1->FIOSET = LED_2; // turn LED on
|
|
}
|
|
else {
|
|
LPC_GPIO1->FIOCLR = LED_2; // turn LED off
|
|
}
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
|
|
QS_U8(1, n); // Philosopher number
|
|
QS_STR(stat); // Philosopher status
|
|
QS_END()
|
|
}
|
|
//............................................................................
|
|
void BSP::displayPaused(uint8_t paused) {
|
|
if (paused != 0U) {
|
|
LPC_GPIO1->FIOSET = LED_3; // turn LED on
|
|
}
|
|
else {
|
|
LPC_GPIO1->FIOCLR = LED_3; // turn LED off
|
|
}
|
|
}
|
|
//............................................................................
|
|
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
|
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
//
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
//............................................................................
|
|
void BSP::randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
//............................................................................
|
|
void BSP::terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
} // namespace DPP
|
|
|
|
|
|
// namespace QP **************************************************************
|
|
namespace QP {
|
|
|
|
// QF callbacks ==============================================================
|
|
void QF::onStartup(void) {
|
|
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
|
|
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
|
|
|
|
// assing all priority bits for preemption-prio. and none to sub-prio.
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
// set priorities of ALL ISRs used in the system, see NOTE00
|
|
//
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
|
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
//
|
|
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
|
|
NVIC_SetPriority(EINT0_IRQn, DPP::EINT0_PRIO);
|
|
// ...
|
|
|
|
// enable IRQs...
|
|
NVIC_EnableIRQ(EINT0_IRQn);
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
void QK::onIdle(void) {
|
|
// toggle the User LED on and then off, see NOTE01
|
|
QF_INT_DISABLE();
|
|
LPC_GPIO1->FIOSET = LED_4; // turn LED on
|
|
__NOP(); // a couple of NOPs to actually see the LED glow
|
|
__NOP();
|
|
__NOP();
|
|
__NOP();
|
|
LPC_GPIO1->FIOCLR = LED_4; // turn LED off
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
if ((LPC_UART0->LSR & 0x20U) != 0U) { // TX Holding Register empty?
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
|
|
uint8_t const *block;
|
|
|
|
QF_INT_DISABLE();
|
|
block = QS::getBlock(&fifo); // try to get next block to transmit
|
|
QF_INT_ENABLE();
|
|
|
|
while (fifo-- != 0) { // any bytes in the block?
|
|
LPC_UART0->THR = *block++; // put into the FIFO
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
// you might need to customize the clock management for your application,
|
|
// see the datasheet for your particular Cortex-M3 MCU.
|
|
//
|
|
__WFI(); // Wait-For-Interrupt
|
|
#endif
|
|
}
|
|
|
|
//............................................................................
|
|
extern "C" void Q_onAssert(char const *module, int loc) {
|
|
//
|
|
// NOTE: add here your application-specific error handling
|
|
//
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
// QS callbacks ==============================================================
|
|
#ifdef Q_SPY
|
|
|
|
static void UART0_setBaudrate(uint32_t baud); // helper function
|
|
|
|
//............................................................................
|
|
bool QS::onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy
|
|
initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
// setup the P0_2 UART0 TX pin
|
|
LPC_PINCON->PINSEL0 &= ~(3U << 4); /* clear P0_2 function */
|
|
LPC_PINCON->PINSEL0 |= (1U << 4); /* P0_2 to UART function (TX) */
|
|
LPC_PINCON->PINMODE0 &= ~(3U << 4); /* P0_2 pull-up register */
|
|
|
|
// setup the P0_3 UART0 RX pin
|
|
LPC_PINCON->PINSEL0 &= ~(3U << 6); /* clear P0_3 function */
|
|
LPC_PINCON->PINSEL0 |= (1U << 6); /* P0_3 to UART function (RX) */
|
|
LPC_PINCON->PINMODE0 &= ~(3U << 6); /* P0_3 pull-up register */
|
|
|
|
/* enable power to UART0 */
|
|
LPC_SC->PCONP |= (1U << 3);
|
|
|
|
/* enable FIFOs and default RX trigger level */
|
|
LPC_UART0->FCR =
|
|
(1U << 0) /* FIFO Enable - 0 = Disables, 1 = Enabled */
|
|
| (0U << 1) /* Rx Fifo Reset */
|
|
| (0U << 2) /* Tx Fifo Reset */
|
|
| (0U << 6); /* Rx irq trig: 0=1char, 1=4chars, 2=8chars, 3=14chars */
|
|
|
|
/* disable IRQs */
|
|
LPC_UART0->IER =
|
|
(0U << 0) /* Rx Data available IRQ disable */
|
|
| (0U << 1) /* Tx Fifo empty IRQ disable */
|
|
| (0U << 2); /* Rx Line Status IRQ disable */
|
|
|
|
|
|
// set default baud rate
|
|
UART0_setBaudrate(115200U);
|
|
|
|
// format 8-data-bits, 1-stop-bit, parity-none
|
|
LPC_UART0->LCR =
|
|
(3U << 0) /* 8-data-bits */
|
|
| (0U << 2) /* 1 stop-bit */
|
|
| (0U << 3) /* parity disable */
|
|
| (0U << 4); /* parity none */
|
|
|
|
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
|
|
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
|
|
|
|
// setup the QS filters...
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(DPP::PHILO_STAT);
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
|
|
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
|
|
}
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
|
|
- static_cast<QSTimeCtr>(SysTick->VAL);
|
|
}
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
|
|
QF_INT_ENABLE();
|
|
while ((LPC_UART0->LSR & 0x20U) == 0U) { // while THR empty...
|
|
}
|
|
LPC_UART0->THR = (b & 0xFFU); // put into the DR register
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
//............................................................................
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
void QS::onReset(void) {
|
|
//TBD
|
|
}
|
|
//............................................................................
|
|
//! callback function to execute a uesr command (to be implemented in BSP)
|
|
void QS::onCommand(uint8_t cmdId, uint32_t param1,
|
|
uint32_t param2, uint32_t param3)
|
|
{
|
|
(void)cmdId;
|
|
(void)param1;
|
|
(void)param2;
|
|
(void)param3;
|
|
//TBD
|
|
}
|
|
|
|
//............................................................................
|
|
/*
|
|
* Set the LPC UART0 barud-rate generator according to
|
|
* Section 14.4.12 in LPC176x Manual (document UM10360)
|
|
*/
|
|
static void UART0_setBaudrate(uint32_t baud) {
|
|
|
|
/* First we check to see if the basic divide with no DivAddVal/MulVal
|
|
* ratio gives us an integer result. If it does, we set DivAddVal = 0,
|
|
* MulVal = 1. Otherwise, we search the valid ratio value range to find
|
|
* the closest match. This could be more elegant, using search methods
|
|
* and/or lookup tables, but the brute force method is not that much
|
|
* slower, and is more maintainable.
|
|
*/
|
|
uint32_t PCLK = SystemCoreClock; /* divider /1 set below */
|
|
uint16_t DL = PCLK / (16U * baud);
|
|
uint8_t DivAddVal = 0U;
|
|
uint8_t MulVal = 1U;
|
|
|
|
/* set PCLK divider to 1 */
|
|
LPC_SC->PCLKSEL0 &= ~(0x3U << 6); /* clear divider bits */
|
|
LPC_SC->PCLKSEL0 |= (0x1U << 6); /* set divider to 1 */
|
|
|
|
if ((PCLK % (16U * baud)) != 0U) { /* non zero remainder? */
|
|
uint32_t err_best = baud;
|
|
bool found = false;
|
|
uint32_t b;
|
|
uint8_t mv;
|
|
for (mv = 1U; mv < 16U && !found; mv++) {
|
|
uint16_t dlv;
|
|
uint8_t dav;
|
|
for (dav = 0U; dav < mv; ++dav) {
|
|
/*
|
|
* baud = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
|
|
* solving for dlv, we get
|
|
* dlv = mul * PCLK / (16 * baud * (divadd + mul))
|
|
* mul has 4 bits, PCLK has 27 so we have 1 bit headroom,
|
|
* which can be used for rounding for many values of mul
|
|
* and PCLK we have 2 or more bits of headroom which can
|
|
* be used to improve precision
|
|
* note: X / 32 doesn't round correctly.
|
|
* Instead, we use ((X / 16) + 1) / 2 for correct rounding
|
|
*/
|
|
if ((mv*PCLK*2U) & 0x80000000U) { /* 1 bit headroom */
|
|
dlv = ((((2U*mv*PCLK) / (baud*(dav + mv)))/16U) + 1U)/2U;
|
|
}
|
|
else { /* 2 bits headroom, use more precision */
|
|
dlv = ((((4U*mv*PCLK) / (baud*(dav+mv)))/32U) + 1U)/2U;
|
|
}
|
|
|
|
/* datasheet says if DLL==DLM==0, then 1 is used instead */
|
|
if (dlv == 0U) {
|
|
dlv = 1U;
|
|
}
|
|
/* datasheet says if dav > 0 then DL must be >= 2 */
|
|
if ((dav > 0U) && (dlv < 2U)) {
|
|
dlv = 2U;
|
|
}
|
|
/* integer rearrangement of baud equation (with rounding) */
|
|
b = ((PCLK*mv / (dlv*(dav + mv)*8U)) + 1U)/2U;
|
|
b = (b >= baud) ? (b - baud) : (baud - b);
|
|
|
|
/* check to see how we did */
|
|
if (b < err_best) {
|
|
err_best = b;
|
|
DL = dlv;
|
|
MulVal = mv;
|
|
DivAddVal = dav;
|
|
|
|
if (b == baud) {
|
|
found = true;
|
|
break; /* break out of the inner for-loop */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// set LCR[DLAB] to enable writing to divider registers
|
|
LPC_UART0->LCR |= (1U << 7);
|
|
|
|
// set divider values
|
|
LPC_UART0->DLM = (DL >> 8) & 0xFFU;
|
|
LPC_UART0->DLL = (DL >> 0) & 0xFFU;
|
|
LPC_UART0->FDR = ((uint32_t)DivAddVal << 0)
|
|
| ((uint32_t)MulVal << 4);
|
|
|
|
// clear LCR[DLAB]
|
|
LPC_UART0->LCR &= ~(1U << 7);
|
|
}
|
|
#endif // Q_SPY
|
|
//--------------------------------------------------------------------------*/
|
|
|
|
} // namespace QP
|
|
|
|
//****************************************************************************
|
|
// NOTE00:
|
|
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
// ISR priority that is disabled by the QF framework. The value is suitable
|
|
// for the NVIC_SetPriority() CMSIS function.
|
|
//
|
|
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
// with the numerical values of priorities equal or higher than
|
|
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
|
|
// macros or any other QF/QK services. These ISRs are "QF-aware".
|
|
//
|
|
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
// level (i.e., with the numerical values of priorities less than
|
|
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
|
|
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
|
|
// by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
// triggering a "QF-aware" ISR, which can post/publish events.
|
|
//
|
|
// NOTE01:
|
|
// The User LED is used to visualize the idle loop activity. The brightness
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
// execution time contributes to the brightness of the User LED.
|
|
//
|