Quantum Leaps 1b45201043 5.9.5
2017-07-20 13:06:27 -04:00

545 lines
20 KiB
C++

///***************************************************************************
// Product: DPP example, NXP mbed-LPC1768 board, preemptive QK kernel
// Last updated for version 5.9.5
// Last updated on 2017-07-20
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "LPC17xx.h" // CMSIS-compliant header file for the MCU used
// add other drivers if necessary...
Q_DEFINE_THIS_FILE
// namespace DPP *************************************************************
namespace DPP {
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
EINT0_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
SYSTICK_PRIO,
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// Local-scope objects -------------------------------------------------------
// LEDs available on the board
#define LED_1 (1U << 18) // P1.18
#define LED_2 (1U << 20) // P1.20
#define LED_3 (1U << 21) // P1.21
#define LED_4 (1U << 23) // P1.23
// Push-Button wired externally to DIP8 (P0.6)
#define BTN_EXT (1U << 6) // P0.6
static unsigned l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// event-source identifiers used for tracing
static uint8_t const l_SysTick_Handler = 0U;
static uint8_t const l_EINT0_IRQHandler = 0U;
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE 0x80U
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER
};
#endif
// ISRs used in this project =================================================
extern "C" {
//............................................................................
void SysTick_Handler(void); // prototype
void SysTick_Handler(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
QK_ISR_ENTRY(); // inform QK about entering an ISR
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = ~LPC_GPIO0->FIOPIN; // read P0 with the state of the Buttons
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & BTN_EXT) != 0U) { // debounced BTN_EXT state changed?
if ((buttons.depressed & BTN_EXT) != 0U) { // is BTN_EXT depressed?
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else { // the button is released
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler);
}
}
QK_ISR_EXIT(); // inform QK about exiting an ISR
}
//............................................................................
void EINT0_IRQHandler(void); // prototype
void EINT0_IRQHandler(void) {
QK_ISR_ENTRY(); // inform QK about entering an ISR
// for testing..
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG),
&l_EINT0_IRQHandler);
QK_ISR_EXIT(); // inform QK about exiting an ISR
}
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// turn the GPIO clock on
LPC_SC->PCONP |= (1U << 15);
// setup the GPIO pin functions for the LEDs...
LPC_PINCON->PINSEL3 &= ~(3U << 4); // LED_1: function P1.18 to GPIO
LPC_PINCON->PINSEL3 &= ~(3U << 8); // LED_2: function P1.20 to GPIO
LPC_PINCON->PINSEL3 &= ~(3U << 10); // LED_3: function P1.21 to GPIO
LPC_PINCON->PINSEL3 &= ~(3U << 14); // LED_4: function P1.23 to GPIO
// Set GPIO-P1 LED pins to output
LPC_GPIO1->FIODIR |= (LED_1 | LED_2 | LED_3 | LED_4);
// setup the GPIO pin function for the Button...
LPC_PINCON->PINSEL0 &= ~(3U << 12); // function P0.6 to GPIO, pull-up
// Set GPIO-P0 Button pin as input
LPC_GPIO0->FIODIR &= ~BTN_EXT;
BSP::randomSeed(1234U);
if (QS_INIT((void *)0) == 0U) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_EINT0_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'h') {
LPC_GPIO1->FIOSET = LED_1; // turn LED on
}
else {
LPC_GPIO1->FIOCLR = LED_1; // turn LED off
}
if (stat[0] == 'e') {
LPC_GPIO1->FIOSET = LED_2; // turn LED on
}
else {
LPC_GPIO1->FIOCLR = LED_2; // turn LED off
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused != 0U) {
LPC_GPIO1->FIOSET = LED_3; // turn LED on
}
else {
LPC_GPIO1->FIOCLR = LED_3; // turn LED off
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
// assing all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
NVIC_SetPriority(EINT0_IRQn, DPP::EINT0_PRIO);
// ...
// enable IRQs...
NVIC_EnableIRQ(EINT0_IRQn);
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QK::onIdle(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
LPC_GPIO1->FIOSET = LED_4; // turn LED on
__NOP(); // a couple of NOPs to actually see the LED glow
__NOP();
__NOP();
__NOP();
LPC_GPIO1->FIOCLR = LED_4; // turn LED off
QF_INT_ENABLE();
#ifdef Q_SPY
if ((LPC_UART0->LSR & 0x20U) != 0U) { // TX Holding Register empty?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
uint8_t const *block;
QF_INT_DISABLE();
block = QS::getBlock(&fifo); // try to get next block to transmit
QF_INT_ENABLE();
while (fifo-- != 0) { // any bytes in the block?
LPC_UART0->THR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
//
__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
static void UART0_setBaudrate(uint32_t baud); // helper function
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy
initBuf(qsBuf, sizeof(qsBuf));
// setup the P0_2 UART0 TX pin
LPC_PINCON->PINSEL0 &= ~(3U << 4); /* clear P0_2 function */
LPC_PINCON->PINSEL0 |= (1U << 4); /* P0_2 to UART function (TX) */
LPC_PINCON->PINMODE0 &= ~(3U << 4); /* P0_2 pull-up register */
// setup the P0_3 UART0 RX pin
LPC_PINCON->PINSEL0 &= ~(3U << 6); /* clear P0_3 function */
LPC_PINCON->PINSEL0 |= (1U << 6); /* P0_3 to UART function (RX) */
LPC_PINCON->PINMODE0 &= ~(3U << 6); /* P0_3 pull-up register */
/* enable power to UART0 */
LPC_SC->PCONP |= (1U << 3);
/* enable FIFOs and default RX trigger level */
LPC_UART0->FCR =
(1U << 0) /* FIFO Enable - 0 = Disables, 1 = Enabled */
| (0U << 1) /* Rx Fifo Reset */
| (0U << 2) /* Tx Fifo Reset */
| (0U << 6); /* Rx irq trig: 0=1char, 1=4chars, 2=8chars, 3=14chars */
/* disable IRQs */
LPC_UART0->IER =
(0U << 0) /* Rx Data available IRQ disable */
| (0U << 1) /* Tx Fifo empty IRQ disable */
| (0U << 2); /* Rx Line Status IRQ disable */
// set default baud rate
UART0_setBaudrate(115200U);
// format 8-data-bits, 1-stop-bit, parity-none
LPC_UART0->LCR =
(3U << 0) /* 8-data-bits */
| (0U << 2) /* 1 stop-bit */
| (0U << 3) /* parity disable */
| (0U << 4); /* parity none */
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(DPP::PHILO_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
while ((LPC_UART0->LSR & 0x20U) == 0U) { // while THR empty...
}
LPC_UART0->THR = (b & 0xFFU); // put into the DR register
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
//TBD
}
//............................................................................
//! callback function to execute a uesr command (to be implemented in BSP)
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
//TBD
}
//............................................................................
/*
* Set the LPC UART0 barud-rate generator according to
* Section 14.4.12 in LPC176x Manual (document UM10360)
*/
static void UART0_setBaudrate(uint32_t baud) {
/* First we check to see if the basic divide with no DivAddVal/MulVal
* ratio gives us an integer result. If it does, we set DivAddVal = 0,
* MulVal = 1. Otherwise, we search the valid ratio value range to find
* the closest match. This could be more elegant, using search methods
* and/or lookup tables, but the brute force method is not that much
* slower, and is more maintainable.
*/
uint32_t PCLK = SystemCoreClock; /* divider /1 set below */
uint16_t DL = PCLK / (16U * baud);
uint8_t DivAddVal = 0U;
uint8_t MulVal = 1U;
/* set PCLK divider to 1 */
LPC_SC->PCLKSEL0 &= ~(0x3U << 6); /* clear divider bits */
LPC_SC->PCLKSEL0 |= (0x1U << 6); /* set divider to 1 */
if ((PCLK % (16U * baud)) != 0U) { /* non zero remainder? */
uint32_t err_best = baud;
bool found = false;
uint32_t b;
uint8_t mv;
for (mv = 1U; mv < 16U && !found; mv++) {
uint16_t dlv;
uint8_t dav;
for (dav = 0U; dav < mv; ++dav) {
/*
* baud = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
* solving for dlv, we get
* dlv = mul * PCLK / (16 * baud * (divadd + mul))
* mul has 4 bits, PCLK has 27 so we have 1 bit headroom,
* which can be used for rounding for many values of mul
* and PCLK we have 2 or more bits of headroom which can
* be used to improve precision
* note: X / 32 doesn't round correctly.
* Instead, we use ((X / 16) + 1) / 2 for correct rounding
*/
if ((mv*PCLK*2U) & 0x80000000U) { /* 1 bit headroom */
dlv = ((((2U*mv*PCLK) / (baud*(dav + mv)))/16U) + 1U)/2U;
}
else { /* 2 bits headroom, use more precision */
dlv = ((((4U*mv*PCLK) / (baud*(dav+mv)))/32U) + 1U)/2U;
}
/* datasheet says if DLL==DLM==0, then 1 is used instead */
if (dlv == 0U) {
dlv = 1U;
}
/* datasheet says if dav > 0 then DL must be >= 2 */
if ((dav > 0U) && (dlv < 2U)) {
dlv = 2U;
}
/* integer rearrangement of baud equation (with rounding) */
b = ((PCLK*mv / (dlv*(dav + mv)*8U)) + 1U)/2U;
b = (b >= baud) ? (b - baud) : (baud - b);
/* check to see how we did */
if (b < err_best) {
err_best = b;
DL = dlv;
MulVal = mv;
DivAddVal = dav;
if (b == baud) {
found = true;
break; /* break out of the inner for-loop */
}
}
}
}
}
// set LCR[DLAB] to enable writing to divider registers
LPC_UART0->LCR |= (1U << 7);
// set divider values
LPC_UART0->DLM = (DL >> 8) & 0xFFU;
LPC_UART0->DLL = (DL >> 0) & 0xFFU;
LPC_UART0->FDR = ((uint32_t)DivAddVal << 0)
| ((uint32_t)MulVal << 4);
// clear LCR[DLAB]
LPC_UART0->LCR &= ~(1U << 7);
}
#endif // Q_SPY
//--------------------------------------------------------------------------*/
} // namespace QP
//****************************************************************************
// NOTE00:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
// with the numerical values of priorities equal or higher than
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
// macros or any other QF/QK services. These ISRs are "QF-aware".
//
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
// level (i.e., with the numerical values of priorities less than
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
// by which a "QF-unaware" ISR can communicate with the QF framework is by
// triggering a "QF-aware" ISR, which can post/publish events.
//
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//