Quantum Leaps f94afe12dc 5.9.7
2017-08-21 18:21:15 -04:00

548 lines
19 KiB
C++

///***************************************************************************
// Product: DPP example, STM32F4-Discovery board, dual-mode QXK kernel
// Last Updated for Version: 5.9.7
// Date of the Last Update: 2017-08-19
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// https://state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "stm32f4xx.h" // CMSIS-compliant header file for the MCU used
#include "stm32f4xx_exti.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_usart.h"
// add other drivers if necessary...
Q_DEFINE_THIS_FILE
// namespace DPP *************************************************************
namespace DPP {
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
USART2_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
SYSTICK_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// Local-scope objects -------------------------------------------------------
#define LED_GPIO_PORT GPIOD
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
#define LED4_PIN GPIO_Pin_12
#define LED3_PIN GPIO_Pin_13
#define LED5_PIN GPIO_Pin_14
#define LED6_PIN GPIO_Pin_15
#define BTN_GPIO_PORT GPIOA
#define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA
#define BTN_B1 GPIO_Pin_0
static uint32_t l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static uint8_t const l_SysTick = (uint8_t)0;
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
COMMAND_STAT
};
#endif
// ISRs used in this project =================================================
extern "C" {
//............................................................................
void SysTick_Handler(void); // prototype
void SysTick_Handler(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { 0U, 0U };
uint32_t current;
uint32_t tmp;
QXK_ISR_ENTRY(); // inform QXK about entering an ISR
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
QP::QF::TICK_X(0U, &l_SysTick); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = BTN_GPIO_PORT->IDR; // read BTN GPIO
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & BTN_B1) != 0U) { // debounced B1 state changed?
if ((buttons.depressed & BTN_B1) != 0U) { // is B1 depressed?
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_SysTick);
}
else { // the button is released
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_SysTick);
}
}
QXK_ISR_EXIT(); // inform QXK about exiting an ISR
}
//............................................................................
void USART2_IRQHandler(void); // prototype
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF/QXK and is not disabled. Such ISRs don't need to call QXK_ISR_ENTRY/
// QXK_ISR_EXIT and they cannot post or publish events.
//
void USART2_IRQHandler(void) {
if ((USART2->SR & USART_SR_RXNE) != 0) {
uint32_t b = USART2->DR;
QP::QS::rxPut(b);
}
}
#else
void USART2_IRQHandler(void) {}
#endif // Q_SPY
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// configure the FPU usage by choosing one of the options...
#if 1
// OPTION 1:
// Use the automatic FPU state preservation and the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in more than one task or
// in any ISRs. This setting is the safest and recommended, but requires
// extra stack space and CPU cycles.
//
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
#else
// OPTION 2:
// Do NOT to use the automatic FPU state preservation and
// do NOT to use the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in ONE task only and not
// in any ISR. This setting is very efficient, but if more than one task
// (or ISR) start using the FPU, this can lead to corruption of the
// FPU registers. This option should be used with CAUTION.
//
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
#endif
GPIO_InitTypeDef GPIO_struct;
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
SystemCoreClockUpdate();
// Explictily Disable the automatic FPU state preservation as well as
// the FPU lazy stacking
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
// Initialize thr port for the LEDs
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE);
// GPIO Configuration for the LEDs...
GPIO_struct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_struct.GPIO_Pin = LED3_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off
GPIO_struct.GPIO_Pin = LED4_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off
GPIO_struct.GPIO_Pin = LED5_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off
GPIO_struct.GPIO_Pin = LED6_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
// Initialize thr port for Button
RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE);
// GPIO Configuration for the Button...
GPIO_struct.GPIO_Pin = BTN_B1;
GPIO_struct.GPIO_Mode = GPIO_Mode_IN;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(BTN_GPIO_PORT, &GPIO_struct);
// seed the random number generator
randomSeed(1234U);
if (QS_INIT((void *)0) == 0U) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
(void)n;
if (stat[0] == 'h') {
LED_GPIO_PORT->BSRRL = LED3_PIN; // turn LED on
}
else {
LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off
}
if (stat[0] == 'e') {
LED_GPIO_PORT->BSRRL = LED5_PIN; // turn LED on
}
else {
LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off
}
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused != 0U) {
LED_GPIO_PORT->BSRRL = LED4_PIN; // turn LED on
}
else {
LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// Some flating point code is to exercise the VFP...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
QP::QSchedStatus lockStat = QP::QXK::schedLock(N_PHILO); // protect l_rnd
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
QP::QXK::schedUnlock(lockStat); // sched unlock around l_rnd
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
//............................................................................
void BSP::ledOn(void) {
LED_GPIO_PORT->BSRRL = LED6_PIN; // turn LED on
}
//............................................................................
void BSP::ledOff(void) {
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
// assing all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(USART2_IRQn, DPP::USART2_PRIO);
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
// ...
// enable IRQs...
#ifdef Q_SPY
NVIC_EnableIRQ(USART2_IRQn); // USART2 interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QXK::onIdle(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
LED_GPIO_PORT->BSRRL = LED6_PIN; // turn LED on
__NOP(); // wait a little to actually see the LED glow
__NOP();
__NOP();
__NOP();
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
QF_INT_ENABLE();
#ifdef Q_SPY
QS::rxParse(); // parse all the received bytes
if ((USART2->SR & USART_FLAG_TXE) != 0) { // is TXE empty?
uint16_t b;
QF_INT_DISABLE();
b = QS::getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { // not End-Of-Data?
USART2->DR = (b & 0xFFU); // put into the DR register
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
//
// !!!CAUTION!!!
// The WFI instruction stops the CPU clock, which unfortunately disables
// the JTAG port, so the ST-Link debugger can no longer connect to the
// board. For that reason, the call to __WFI() has to be used with CAUTION.
//
// NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
// reset the board, then connect with ST-Link Utilities and erase the part.
// The trick with BOOT(0) is it gets the part to run the System Loader
// instead of your broken code. When done disconnect BOOT0, and start over.
//
//__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[2*1024]; // buffer for QS-TX channel
static uint8_t qsRxBuf[100]; // buffer for QS-RX channel
GPIO_InitTypeDef GPIO_struct;
USART_InitTypeDef USART_struct;
(void)arg; // avoid the "unused parameter" compiler warning
initBuf(qsBuf, sizeof(qsBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// enable peripheral clock for USART2
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
// GPIOA clock enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// GPIOA Configuration: USART2 TX on PA2 and RX on PA3
GPIO_struct.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3;
GPIO_struct.GPIO_Mode = GPIO_Mode_AF;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ;
GPIO_Init(GPIOA, &GPIO_struct);
// Connect USART2 pins to AF2
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); // TX = PA2
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // RX = PA3
USART_struct.USART_BaudRate = 115200;
USART_struct.USART_WordLength = USART_WordLength_8b;
USART_struct.USART_StopBits = USART_StopBits_1;
USART_struct.USART_Parity = USART_Parity_No;
USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_struct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
USART_Init(USART2, &USART_struct);
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); // enable RX interrupt
USART_Cmd(USART2, ENABLE); // enable USART2
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_SM_RECORDS); // state machine records
QS_FILTER_ON(QS_AO_RECORDS); // active object records
QS_FILTER_ON(QS_UA_RECORDS); // all user records
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
// while TXE not empty
while ((USART2->SR & USART_FLAG_TXE) == 0) { // while TXE not empty
}
USART2->DR = (b & 0xFFU); // put into the DR register
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
// application-specific record
QS_BEGIN(DPP::COMMAND_STAT, static_cast<void *>(0))
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_U32(8, param2);
QS_U32(8, param3);
QS_END()
if (cmdId == 10U) {
assert_failed("QS_onCommand", 11);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE00:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
// with the numerical values of priorities equal or higher than
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QXK_ISR_ENTRY/QXK_ISR_ENTRY
// macros or any other QF/QXK services. These ISRs are "QF-aware".
//
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
// level (i.e., with the numerical values of priorities less than
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
// Such "QF-unaware" ISRs cannot call any QF/QXK services. In particular they
// can NOT call the macros QXK_ISR_ENTRY/QXK_ISR_ENTRY. The only mechanism
// by which a "QF-unaware" ISR can communicate with the QF framework is by
// triggering a "QF-aware" ISR, which can post/publish events.
//
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//