qpcpp/include/qpset.h
Quantum Leaps 655608b020 5.7.2
2016-09-29 19:54:50 -04:00

235 lines
7.9 KiB
C++

/// @file
/// @brief platform-independent priority sets of 8 or 64 elements.
/// @ingroup qf
/// @cond
///***************************************************************************
/// Last updated for version 5.7.2
/// Last updated on 2016-09-26
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) Quantum Leaps. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// http://www.state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#ifndef qpset_h
#define qpset_h
#if (QF_MAX_ACTIVE < 1) || (64 < QF_MAX_ACTIVE)
#error "QF_MAX_ACTIVE not defined or out of range. Valid range is 1..64"
#endif
namespace QP {
/****************************************************************************/
/* Log-base-2 calculations ...*/
#ifndef QF_LOG2
//! Lookup table for (log2(n) + 1), where n = 0..255 */
///
/// @description
/// This lookup delivers the 1-based number of the most significant 1-bit
/// of a byte.
extern uint8_t const QF_log2Lkup[256];
//! function that returns (log2(x) + 1), where @p x is uint32_t */
///
/// @description
/// This function returns the 1-based number of the most significant 1-bit
/// of a 32-bit number. This function can be replaced in the QP ports, if
/// the CPU supports special instructions, such as CLZ
/// (count leading zeros).
///
inline uint_fast8_t QF_LOG2(uint32_t const x) {
uint_fast8_t n;
uint_fast8_t i;
if ((x >> 16) != static_cast<uint32_t>(0)) {
if ((x >> 24) != static_cast<uint32_t>(0)) {
i = static_cast<uint_fast8_t>(x >> 24);
n = static_cast<uint_fast8_t>(24);
}
else {
i = static_cast<uint_fast8_t>(x >> 16);
n = static_cast<uint_fast8_t>(16);
}
}
else {
if ((x >> 8) != static_cast<uint32_t>(0)) {
i = static_cast<uint_fast8_t>(x >> 8);
n = static_cast<uint_fast8_t>(8);
}
else {
i = static_cast<uint_fast8_t>(x);
n = static_cast<uint_fast8_t>(0);
}
}
return static_cast<uint_fast8_t>(QF_log2Lkup[i]) + n;
}
#endif // QF_LOG2
//****************************************************************************
#if (QF_MAX_ACTIVE <= 32)
//! Priority Set of up to 32 elements */
///
/// The priority set represents the set of active objects that are ready to
/// run and need to be considered by the scheduling algorithm. The set is
/// capable of storing up to 32 priority levels.
///
class QPSet {
uint32_t volatile m_bits; //!< bitmask with a bit for each element
public:
//! Makes the priority set @p me_ empty.
void setEmpty(void) {
m_bits = static_cast<uint32_t>(0);
}
//! Evaluates to true if the priority set is empty
bool isEmpty(void) const {
return (m_bits == static_cast<uint32_t>(0));
}
//! Evaluates to true if the priority set is not empty
bool notEmpty(void) const {
return (m_bits != static_cast<uint32_t>(0));
}
//! the function evaluates to TRUE if the priority set has the element n.
bool hasElement(uint_fast8_t const n) const {
return (m_bits & (static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(1))))
!= static_cast<uint32_t>(0);
}
//! insert element @p n into the set, n = 1..8
void insert(uint_fast8_t const n) {
m_bits |= static_cast<uint32_t>(
static_cast<uint32_t>(1) << (n - static_cast<uint_fast8_t>(1)));
}
//! remove element @p n from the set, n = 1..8
void remove(uint_fast8_t const n) {
m_bits &= static_cast<uint32_t>(
~(static_cast<uint32_t>(1) << (n - static_cast<uint_fast8_t>(1))));
}
//! find the maximum element in the set, returns zero if the set is empty
uint_fast8_t findMax(void) const {
return QF_LOG2(m_bits);
}
};
#else // QF_MAX_ACTIVE > 32
//! Priority Set of up to 64 elements
///
/// The priority set represents the set of active objects that are ready to
/// run and need to be considered by the scheduling algorithm. The set is
/// capable of storing up to 64 priority levels.
///
class QPSet {
uint32_t volatile m_bits[2]; //!< two bitmasks with a bit for each element
public:
//! Makes the priority set @p me_ empty.
void setEmpty(void) {
m_bits[0] = static_cast<uint32_t>(0);
m_bits[1] = static_cast<uint32_t>(0);
}
//! Evaluates to true if the priority set is empty
// the following logic avoids UB in volatile access for MISRA compliantce
bool isEmpty(void) const {
return (m_bits[0] == static_cast<uint32_t>(0))
? (m_bits[1] == static_cast<uint32_t>(0))
: false;
}
//! Evaluates to true if the priority set is not empty
// the following logic avoids UB in volatile access for MISRA compliantce
bool notEmpty(void) const {
return (m_bits[0] != static_cast<uint32_t>(0))
? true
: (m_bits[1] != static_cast<uint32_t>(0));
}
//! the function evaluates to TRUE if the priority set has the element n.
bool hasElement(uint_fast8_t const n) const {
return (n <= static_cast<uint_fast8_t>(32))
? ((m_bits[0] & (static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(1))))
!= static_cast<uint32_t>(0))
: ((m_bits[1] & (static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(33))))
!= static_cast<uint32_t>(0));
}
//! insert element @p n into the set, n = 1..64
void insert(uint_fast8_t const n) {
if (n <= static_cast<uint_fast8_t>(32)) {
m_bits[0] |= (static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(1)));
}
else {
m_bits[1] |= (static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(33)));
}
}
//! remove element @p n from the set, n = 1..64
void remove(uint_fast8_t const n) {
if (n <= static_cast<uint_fast8_t>(32)) {
(m_bits[0] &= ~(static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(1))));
}
else {
(m_bits[1] &= ~(static_cast<uint32_t>(1)
<< (n - static_cast<uint_fast8_t>(33))));
}
}
//! find the maximum element in the set, returns zero if the set is empty
uint_fast8_t findMax(void) const {
return (m_bits[1] != static_cast<uint32_t>(0))
? (QF_LOG2(m_bits[1]) + static_cast<uint_fast8_t>(32)) \
: (QF_LOG2(m_bits[0]));
}
};
#endif // QF_MAX_ACTIVE
} // namespace QP
#endif // qpset_h