qpcpp/include/qk.h
Quantum Leaps 75ef6eea18 5.6.4b
2016-05-05 12:22:15 -04:00

209 lines
7.3 KiB
C++

/// @file
/// @brief QK/C++ platform-independent public interface.
/// @ingroup qk
/// @cond
///***************************************************************************
/// Last updated for version 5.6.4
/// Last updated on 2016-05-04
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// http://www.state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#ifndef qk_h
#define qk_h
#include "qequeue.h" // QK kernel uses the native QF event queue
#include "qmpool.h" // QK kernel uses the native QF memory pool
#include "qpset.h" // QK kernel uses the native QF priority set
//****************************************************************************
// QF configuration for QK
//! This macro defines the type of the event queue used for active objects.
/// @note
/// This is just an example of the macro definition. Typically, you need
/// to define it in the specific QF port file (qf_port.h). In case of QK,
/// which always depends on the native QF queue, this macro is defined at the
/// level of the platform-independent interface qk.h.
#define QF_EQUEUE_TYPE QEQueue
//! OS-dependent per-thread operating-system object
/// @description
/// The use of this member depends on the CPU. For example, in port to
/// ARM Cortex-M with FPU this member is used to store the LR.
#define QF_OS_OBJECT_TYPE void*
//! OS-dependent representation of the private thread */
/// @description
/// QK uses this member to store the start priority of the AO,
/// which is needed when the QK priority-ceiling mutex is used.
#define QF_THREAD_TYPE uint_fast8_t
//****************************************************************************
namespace QP {
//****************************************************************************
//! QK services.
/// @description
/// This class groups together QK services. It has only static members and
/// should not be instantiated.
///
// @note The QK scheduler, QK priority, QK ready set, etc. belong conceptually
/// to the QK class (as static class members). However, to avoid C++ potential
/// name-mangling problems in assembly language, these elements are defined
/// outside of the QK class and use the extern "C" linkage specification.
class QK {
public:
//! get the current QK version number string of the form X.Y.Z
static char_t const *getVersion(void) {
return versionStr;
}
//! QK idle callback (customized in BSPs for QK)
/// @description
/// QP::QK::onIdle() is called continously by the QK idle loop. This
/// callback gives the application an opportunity to enter a power-saving
/// CPU mode, or perform some other idle processing.
///
/// @note QP::QK::onIdle() is invoked with interrupts enabled and must
/// also return with interrupts enabled.
///
/// @sa QP::QF::onIdle()
static void onIdle(void);
};
/*! Priority-ceiling Mutex the QK preemptive kernel */
class QKMutex {
public:
void init(uint_fast8_t const prio);
void lock(void);
void unlock(void);
private:
uint_fast8_t m_lockPrio; //!< lock prio (priority ceiling)
uint_fast8_t m_prevPrio; //!< previoius lock prio
friend class QF;
};
} // namespace QP
//****************************************************************************
extern "C" {
//! QK initialization
void QK_init(void);
//! The QK scheduler
void QK_sched_(uint_fast8_t p);
//! Find the highest-priority task ready to run
uint_fast8_t QK_schedPrio_(void);
#if (QF_MAX_ACTIVE <= 8)
extern QP::QPSet8 QK_readySet_; //!< ready set of AOs
#else
extern QP::QPSet64 QK_readySet_; //!< ready set of AOs
#endif
extern uint_fast8_t volatile QK_currPrio_; //!< current task/ISR priority
extern uint_fast8_t volatile QK_lockPrio_; //!< lock prio (0 == no-lock)
#ifndef QK_ISR_CONTEXT_
extern uint_fast8_t volatile QK_intNest_; //!< interrupt nesting level
#endif // QK_ISR_CONTEXT_
} // extern "C"
//****************************************************************************
// interface used only inside QF, but not in applications
#ifdef QP_IMPL
#ifndef QK_ISR_CONTEXT_
//! Internal port-specific macro that reports the execution context
// (ISR vs. thread).
/// @returns true if the code executes in the ISR context and false
/// otherwise
#define QK_ISR_CONTEXT_() \
(QK_intNest_ != static_cast<uint_fast8_t>(0))
#endif // QK_ISR_CONTEXT_
// QF-specific scheduler locking
//! Internal port-specific macro to represent the scheduler lock status
// that needs to be preserved to allow nesting of locks.
#define QF_SCHED_STAT_TYPE_ QKMutex
//! Internal port-specific macro for selective scheduler locking.
#define QF_SCHED_LOCK_(pLockStat_, prio_) do { \
if (QK_ISR_CONTEXT_()) { \
(pLockStat_)->m_lockPrio = \
static_cast<uint_fast8_t>(QF_MAX_ACTIVE + 1); \
} else { \
(pLockStat_)->init((prio_)); \
(pLockStat_)->lock(); \
} \
} while (false)
//! Internal port-specific macro for selective scheduler unlocking.
#define QF_SCHED_UNLOCK_(pLockStat_) (pLockStat_)->unlock()
// native event queue operations...
#define QACTIVE_EQUEUE_WAIT_(me_) \
Q_ASSERT_ID(0, (me_)->m_eQueue.m_frontEvt != static_cast<QEvt *>(0))
#define QACTIVE_EQUEUE_SIGNAL_(me_) do { \
QK_readySet_.insert((me_)->m_prio); \
if (!QK_ISR_CONTEXT_()) { \
uint_fast8_t p = QK_schedPrio_(); \
if (p != static_cast<uint_fast8_t>(0)) { \
QK_sched_(p); \
} \
} \
} while (false)
#define QACTIVE_EQUEUE_ONEMPTY_(me_) \
QK_readySet_.remove((me_)->m_prio)
// native QF event pool operations...
#define QF_EPOOL_TYPE_ QMPool
#define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \
(p_).init((poolSto_), (poolSize_), (evtSize_))
#define QF_EPOOL_EVENT_SIZE_(p_) \
static_cast<uint_fast16_t>((p_).getBlockSize())
#define QF_EPOOL_GET_(p_, e_, m_) \
((e_) = static_cast<QEvt *>((p_).get((m_))))
#define QF_EPOOL_PUT_(p_, e_) ((p_).put(e_))
#endif // QP_IMPL
#endif // qk_h