qpcpp/ports/threadx/qf_port.cpp
Quantum Leaps 8601e4bc74 5.6.2
2016-04-01 13:55:34 -04:00

287 lines
11 KiB
C++

/// @file
/// @brief QF/C++ port to ThreadX, all supported compilers
/// @cond
////**************************************************************************
/// Last updated for version 5.6.2
/// Last updated on 2016-03-31
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// http://www.state-machine.com
/// mailto:info@state-machine.com
////**************************************************************************
/// @endcond
#define QP_IMPL // this is QP implementation
#include "qf_port.h" // QF port
#include "qf_pkg.h"
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.h" // include QS port
#else
#include "qs_dummy.h" // disable the QS software tracing
#endif // Q_SPY
#include "qassert.h"
// namespace QP ==============================================================
namespace QP {
Q_DEFINE_THIS_MODULE("qf_port")
// Local objects -------------------------------------------------------------
static void thread_function(ULONG thread_input); // prototype
//............................................................................
void QF::init(void) {
}
//............................................................................
int_t QF::run(void) {
onStartup(); // the startup callback
return static_cast<int_t>(0); // return success
}
//............................................................................
void QF::stop(void) {
onCleanup(); // the cleanup callback
}
//............................................................................
void QF::thread_(QMActive *act) {
// event loop of the active object thread
act->m_osObject = true; // enable the thread event-loop
while (act->m_osObject) {
QEvt const *e = act->get_(); // wait for event
act->dispatch(e); // dispatch to the active object's state machine
gc(e); // check if the event is garbage, and collect it if so
}
act->unsubscribeAll(); // unsubscribe from all events
QF::remove_(act); // remove this active object from QF
// cleanup of the queue and thread must succeed
Q_ALLEGE_ID(110, tx_queue_delete(&act->m_eQueue) == TX_SUCCESS);
Q_ALLEGE_ID(120, tx_thread_delete(&act->getThread()) == TX_SUCCESS);
}
//............................................................................
static void thread_function(ULONG thread_input) { // ThreadX signature
// run the active-object thread
QF::thread_(reinterpret_cast<QMActive *>(thread_input));
}
//............................................................................
void QMActive::start(uint_fast8_t prio,
QEvt const *qSto[], uint_fast16_t qLen,
void *stkSto, uint_fast16_t stkSize,
QEvt const *ie)
{
// allege that the ThreadX queue is created successfully
Q_ALLEGE_ID(210,
tx_queue_create(&m_eQueue,
"Q",
TX_1_ULONG,
static_cast<VOID *>(qSto),
static_cast<ULONG>(qLen * sizeof(ULONG)))
== TX_SUCCESS);
m_prio = prio; // save the QF priority
QF::add_(this); // make QF aware of this active object
init(ie); // execute initial transition
QS_FLUSH(); // flush the trace buffer to the host
// convert QF priority to the ThreadX priority
UINT tx_prio = QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE - prio;
Q_ALLEGE_ID(220,
tx_thread_create(
&m_thread, // ThreadX thread control block
"AO", // thread name
&thread_function, // thread function
reinterpret_cast<ULONG>(this), // thread argument
stkSto, // stack start
stkSize, // stack size in bytes
tx_prio, // ThreadX priority
tx_prio, // preemption threshold disabled (same as priority)
TX_NO_TIME_SLICE,
TX_AUTO_START)
== TX_SUCCESS);
}
//............................................................................
void QMActive::stop(void) {
m_osObject = false; // stop the thread loop
}
//............................................................................
#ifndef Q_SPY
bool QMActive::post_(QEvt const * const e, uint_fast16_t const margin)
#else
bool QMActive::post_(QEvt const * const e, uint_fast16_t const margin,
void const * const sender)
#endif
{
bool status;
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
uint_fast16_t nFree =
static_cast<uint_fast16_t>(m_eQueue.tx_queue_available_storage);
if (nFree > margin) {
QS_BEGIN_NOCRIT_(QS_QF_ACTIVE_POST_FIFO, QS::priv_.aoObjFilter, this)
QS_TIME_(); // timestamp
QS_OBJ_(sender); // the sender object
QS_SIG_(e->sig); // the signal of the event
QS_OBJ_(this); // this active object (recipient)
QS_2U8_(e->poolId_, e->refCtr_); // pool Id & refCtr of the evt
QS_EQC_(static_cast<QEQueueCtr>(nFree)); // # free entries
QS_EQC_(static_cast<QEQueueCtr>(0)); // min # free (unknown)
QS_END_NOCRIT_()
// is it a pool event?
if (QF_EVT_POOL_ID_(e) != static_cast<uint8_t>(0)) {
QF_EVT_REF_CTR_INC_(e); // increment the reference counter
}
QF_CRIT_EXIT_();
QEvt const *ep = const_cast<QEvt const *>(e);
Q_ALLEGE_ID(510,
tx_queue_send(&m_eQueue, static_cast<VOID *>(&ep), TX_NO_WAIT)
== TX_SUCCESS);
status = true; // report success
}
else {
// can tolerate dropping evts?
Q_ASSERT_ID(520,
margin != static_cast<uint_fast16_t>(0));
QS_BEGIN_NOCRIT_(QS_QF_ACTIVE_POST_ATTEMPT,
QS::priv_.aoObjFilter, this)
QS_TIME_(); // timestamp
QS_OBJ_(sender); // the sender object
QS_SIG_(e->sig); // the signal of the event
QS_OBJ_(this); // this active object (recipient)
QS_2U8_(e->poolId_, e->refCtr_); // pool Id & refCtr of the evt
QS_EQC_(static_cast<QEQueueCtr>(nFree)); // # free entries
QS_EQC_(static_cast<QEQueueCtr>(0)); // min # free (unknown)
QS_END_NOCRIT_()
QF_CRIT_EXIT_();
status = false; // report failure
}
return status;
}
//............................................................................
void QMActive::postLIFO(QEvt const * const e) {
QF_CRIT_STAT_
QF_CRIT_ENTRY_();
QS_BEGIN_NOCRIT_(QS_QF_ACTIVE_POST_LIFO, QS::priv_.aoObjFilter, this)
QS_TIME_(); // timestamp
QS_SIG_(e->sig); // the signal of this event
QS_OBJ_(this); // this active object
QS_2U8_(e->poolId_, e->refCtr_); // pool Id & refCtr of the evt
// # free entries available
QS_EQC_(static_cast<QEQueueCtr>(m_eQueue.tx_queue_available_storage));
QS_EQC_(static_cast<QEQueueCtr>(0)); // min # free entries (unknown)
QS_END_NOCRIT_()
// is it a pool event?
if (QF_EVT_POOL_ID_(e) != static_cast<uint8_t>(0)) {
QF_EVT_REF_CTR_INC_(e); // increment the reference counter
}
QF_CRIT_EXIT_();
// LIFO posting must succeed, see NOTE1
QEvt const *ep = const_cast<QEvt const *>(e);
Q_ALLEGE_ID(610,
tx_queue_front_send(&m_eQueue, static_cast<VOID *>(&ep), TX_NO_WAIT)
== TX_SUCCESS);
}
//............................................................................
QEvt const *QMActive::get_(void) {
QEvt const *e;
QS_CRIT_STAT_
Q_ALLEGE_ID(710,
tx_queue_receive(&m_eQueue, (VOID *)&e, TX_WAIT_FOREVER)
== TX_SUCCESS);
QS_BEGIN_(QS_QF_ACTIVE_GET, QS::priv_.aoObjFilter, this)
QS_TIME_(); // timestamp
QS_SIG_(e->sig); // the signal of this event
QS_OBJ_(this); // this active object
QS_2U8_(e->poolId_, e->refCtr_); // pool Id & refCtr of the evt
QS_EQC_(static_cast<QEQueueCtr>(0)); // min # free entries (unknown)
QS_END_()
return e;
}
//............................................................................
void QFSchedLock::lock(uint_fast8_t prio) {
QS_CRIT_STAT_
m_lockHolder = tx_thread_identify();
/// @pre must be thread level, so current TX thread must be available
Q_REQUIRE_ID(700, m_lockHolder != static_cast<TX_THREAD *>(0));
// change the preemption threshold of the current thread
Q_ALLEGE_ID(710, tx_thread_preemption_change(m_lockHolder,
(QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE - prio),
&m_prevThre) == TX_SUCCESS);
m_lockPrio = prio;
QS_BEGIN_(QS_SCHED_LOCK, static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE
- m_prevThre),
static_cast<uint8_t>(m_lockPrio)); // new lock prio
QS_END_()
}
//............................................................................
void QFSchedLock::unlock(void) const {
QS_CRIT_STAT_
/// @pre the lock holder TX thread must be available */
Q_REQUIRE_ID(800, m_lockHolder != static_cast<TX_THREAD *>(0));
QS_BEGIN_(QS_SCHED_UNLOCK,
static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(m_lockPrio), /* prev lock prio */
static_cast<uint8_t>(QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE
- m_prevThre)); // new lock prio
QS_END_()
// restore the preemption threshold of the lock holder
UINT old_thre;
Q_ALLEGE_ID(810, tx_thread_preemption_change(m_lockHolder,
m_prevThre,
&old_thre) == TX_SUCCESS);
}
} // namespace QP