2022-10-26 19:47:55 -04:00

422 lines
15 KiB
C++

//============================================================================
// Product: DPP example, NUCLEO-H743ZI board, embOS RTOS kernel
// Last updated for: @qpcpp_7_0_0
// Last updated on 2021-12-21
//
// Q u a n t u m L e a P s
// ------------------------
// Modern Embedded Software
//
// Copyright (C) 2005-2021 Quantum Leaps. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <www.gnu.org/licenses>.
//
// Contact information:
// <www.state-machine.com/licensing>
// <info@state-machine.com>
//============================================================================
#include "qpcpp.hpp"
#include "dpp.hpp"
#include "bsp.hpp"
/* STM32CubeH7 include files */
#include "stm32h7xx_hal.h"
#include "stm32h7xx_nucleo_144.h"
// add other drivers if necessary...
Q_DEFINE_THIS_FILE // define the name of this file for assertions
// namespace DPP *************************************************************
namespace DPP {
// Local-scope objects -------------------------------------------------------
static uint32_t l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static QP::QSpyId const l_embos_ticker = { 0U };
static UART_HandleTypeDef l_uartHandle;
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
COMMAND_STAT,
};
#endif
// embOS application hooks ===================================================
extern "C" {
//............................................................................
static void tick_handler(void) { /* signature of embOS tick hook routine */
/* state of the button debouncing, see below */
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { 0U, 0U };
uint32_t current;
uint32_t tmp;
static uint_fast8_t ctr = 1U;
#ifdef Q_SPY
{
tmp = SysTick->CTRL; /* clear SysTick_CTRL_COUNTFLAG */
QS_tickTime_ += QS_tickPeriod_; /* account for the clock rollover */
}
#endif
/* scale down the 1000Hz embOS tick to the desired BSP_TICKS_PER_SEC */
if (--ctr == 0U) {
ctr = 1000U/DPP::BSP::TICKS_PER_SEC;
QP::QTimeEvt::TICK_X(0U, &l_embos_ticker);
/* Perform the debouncing of buttons. The algorithm for debouncing
* adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
* and Michael Barr, page 71.
*/
current = BSP_PB_GetState(BUTTON_KEY); /* read the Key button */
tmp = buttons.depressed; /* save the debounced depressed buttons */
buttons.depressed |= (buttons.previous & current); /* set depressed */
buttons.depressed &= (buttons.previous | current); /* clear released */
buttons.previous = current; /* update the history */
tmp ^= buttons.depressed; /* changed debounced depressed */
if (tmp != 0U) { /* debounced Key button state changed? */
if (buttons.depressed != 0U) { /* PB0 depressed?*/
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_embos_ticker);
}
else { // the button is released
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_embos_ticker);
}
}
}
}
//............................................................................
void USART3_IRQHandler(void); // prototype
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
// QK_ISR_EXIT and they cannot post or publish events.
//
void USART3_IRQHandler(void) {
// is RX register NOT empty?
if ((DPP::l_uartHandle.Instance->ISR & USART_ISR_RXNE_RXFNE) != 0) {
uint32_t b = DPP::l_uartHandle.Instance->RDR;
QP::QS::rxPut(b);
DPP::l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE_RXFNE; // clear int
}
}
#endif // Q_SPY
/*
* OS_Idle() function overridden from RTOSInit_STM32F4x_CMSIS.c
*
* Function description
* This is basically the "core" of the embOS idle loop.
* This core loop can be changed, but:
* The idle loop does not have a stack of its own, therefore no
* functionality should be implemented that relies on the stack
* to be preserved. However, a simple program loop can be programmed
* (like toggling an output or incrementing a counter)
*/
void OS_Idle(void) {
while (1) {
QF_INT_DISABLE();
BSP_LED_On(LED3);
BSP_LED_On(LED3);
QF_INT_ENABLE();
#ifdef Q_SPY
QP::QS::rxParse(); // parse all the received bytes
if ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) {//TXE empty?
uint16_t b;
QF_INT_DISABLE();
b = QP::QS::getByte();
QF_INT_ENABLE();
if (b != QP::QS_EOD) { // not End-Of-Data?
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M MCU.
*/
/* !!!CAUTION!!!
* The WFI instruction stops the CPU clock, which unfortunately disables
* the JTAG port, so the ST-Link debugger can no longer connect to the
* board. For that reason, the call to __WFI() has to be used with CAUTION.
*
* NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
* reset the board, then connect with ST-Link Utilities and erase the part.
* The trick with BOOT(0) is it gets the part to run the System Loader
* instead of your broken code. When done disconnect BOOT0, and start over.
*/
//__WFI(); /* Wait-For-Interrupt */
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* NOTE: You might need to customize the clock management for your
* application, see the datasheet for your particular Cortex-M3 MCU.
*/
/* !!!CAUTION!!!
* The WFI instruction stops the CPU clock, which unfortunately
* disables the STM32 JTAG port, so the ST-Link debugger can no longer
* connect to the board. For that reason, the call to __WFI() has to
* be used with CAUTION. See also NOTE02
*/
#if ((OS_VIEW_IFSELECT != OS_VIEW_IF_JLINK) && (OS_DEBUG == 0))
//__WFI(); /* Wait-For-Interrupt */
#endif
#endif
}
}
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() has been already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
SCB_EnableICache(); // Enable I-Cache
SCB_EnableDCache(); // Enable D-Cache
// Configure Flash prefetch and Instr. cache through ART accelerator
#if (ART_ACCLERATOR_ENABLE != 0)
__HAL_FLASH_ART_ENABLE();
#endif // ART_ACCLERATOR_ENABLE
// Explictily Disable the automatic FPU state preservation as well as
// the FPU lazy stacking
//
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
// Configure the LEDs
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
// Configure the User Button in GPIO Mode
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
//...
BSP::randomSeed(1234U);
// initialize the QS software tracing...
if (!QS_INIT(nullptr)) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_embos_ticker);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
// setup the QS filters...
QS_GLB_FILTER(QP::QS_SM_RECORDS); // state machine records
QS_GLB_FILTER(QP::QS_AO_RECORDS); // active object records
QS_GLB_FILTER(QP::QS_UA_RECORDS); // all user records
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'h') {
BSP_LED_On(LED1); // turn LED on
}
else {
BSP_LED_Off(LED1); // turn LED off
}
if (stat[0] == 'e') {
BSP_LED_On(LED2); // turn LED on
}
else {
BSP_LED_Off(LED2); // turn LED on
}
QS_BEGIN_ID(PHILO_STAT, AO_Philo[n]->m_prio) // app-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END() // application-specific record end
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused != 0U) {
BSP_LED_On(LED2);
}
else {
BSP_LED_Off(LED2);
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// flating point code is to exercise the FPU
double volatile x = 3.1415926F;
x = x + 2.7182818F;
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
static OS_TICK_HOOK tick_hook;
void QF::onStartup(void) {
OS_TICK_AddHook(&tick_hook, &DPP::tick_handler);
#ifdef Q_SPY
NVIC_SetPriority(USART3_IRQn, 0U); // kernel unaware interrupt
NVIC_EnableIRQ(USART3_IRQn); // UART interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
extern "C" Q_NORETURN Q_onAssert(char const * const module, int_t const loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
DPP::l_uartHandle.Instance = USART3;
DPP::l_uartHandle.Init.BaudRate = 115200;
DPP::l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B;
DPP::l_uartHandle.Init.StopBits = UART_STOPBITS_1;
DPP::l_uartHandle.Init.Parity = UART_PARITY_NONE;
DPP::l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
DPP::l_uartHandle.Init.Mode = UART_MODE_TX_RX;
DPP::l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&DPP::l_uartHandle) != HAL_OK) {
return false; // return failure
}
// Set UART to receive 1 byte at a time via interrupt
HAL_UART_Receive_IT(&DPP::l_uartHandle, (uint8_t *)qsRxBuf, 1);
// NOTE: wait till QF::onStartup() to enable UART interrupt in NVIC
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
// while TXE not empty
while ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) {
}
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//============================================================================
// NOTE1:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//