mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-02-04 06:13:00 +08:00
342 lines
11 KiB
C++
342 lines
11 KiB
C++
//============================================================================
|
|
// Product: DPP example on MSP-EXP430F5529LP board, cooperative QV kernel
|
|
// Last updated for version 6.9.1
|
|
// Last updated on 2020-09-21
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ------------------------
|
|
// Modern Embedded Software
|
|
//
|
|
// Copyright (C) 2005-2020 Quantum Leaps. All rights reserved.
|
|
//
|
|
// This program is open source software: you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Alternatively, this program may be distributed and modified under the
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
// the GNU General Public License and are specifically designed for
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <www.gnu.org/licenses>.
|
|
//
|
|
// Contact information:
|
|
// <www.state-machine.com/licensing>
|
|
// <info@state-machine.com>
|
|
//============================================================================
|
|
#include "qpcpp.hpp"
|
|
#include "dpp.hpp"
|
|
#include "bsp.hpp"
|
|
|
|
#include <msp430f5529.h> // MSP430 variant used
|
|
// add other drivers if necessary...
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
// namespace DPP *************************************************************
|
|
namespace DPP {
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
// 1MHz clock setting, see BSP::init()
|
|
#define BSP_MCK 1000000U
|
|
#define BSP_SMCLK 1000000U
|
|
|
|
#define LED1 (1U << 0)
|
|
#define LED2 (1U << 7)
|
|
|
|
#define BTN_S1 (1U << 1)
|
|
|
|
// random seed
|
|
static uint32_t l_rnd;
|
|
|
|
#ifdef Q_SPY
|
|
/* UART1 pins TX:P4.4, RX:P4.5 */
|
|
#define TXD (1U << 4)
|
|
#define RXD (1U << 5)
|
|
|
|
QP::QSTimeCtr QS_tickTime_;
|
|
|
|
static uint8_t const l_timer0_ISR = 0U;
|
|
|
|
enum AppRecords { // application-specific trace records
|
|
PHILO_STAT = QP::QS_USER,
|
|
COMMAND_STAT
|
|
};
|
|
|
|
#endif
|
|
|
|
// ISRs used in this project =================================================
|
|
extern "C" {
|
|
|
|
//............................................................................
|
|
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
|
|
__interrupt void TIMER0_A0_ISR(void); // prototype
|
|
#pragma vector=TIMER0_A0_VECTOR
|
|
__interrupt void TIMER0_A0_ISR(void)
|
|
#elif defined(__GNUC__)
|
|
__attribute__ ((interrupt(TIMER0_A0_VECTOR)))
|
|
void TIMER0_A0_ISR (void)
|
|
#else
|
|
#error MSP430 compiler not supported!
|
|
#endif
|
|
{
|
|
#ifdef NDEBUG
|
|
__low_power_mode_off_on_exit(); // see NOTE1
|
|
#endif
|
|
|
|
#ifdef Q_SPY
|
|
QS_tickTime_ +=
|
|
(((BSP_SMCLK / 8) + DPP::BSP::TICKS_PER_SEC/2)
|
|
/ DPP::BSP::TICKS_PER_SEC) + 1;
|
|
#endif
|
|
|
|
QP::QTimeEvt::TICK_X(0U, &l_timer0_ISR); // process all time events at rate 0
|
|
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
// BSP functions =============================================================
|
|
void BSP::init(void) {
|
|
WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
|
|
|
|
// leave the MCK and SMCLK at default DCO setting
|
|
|
|
// configure pins for LEDs
|
|
P1DIR |= LED1; // set LED1 pin to output
|
|
P4DIR |= LED2; // set LED2 pin to output
|
|
|
|
if (QS_INIT(nullptr) == 0) { // initialize the QS software tracing
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_timer0_ISR);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
QS_USR_DICTIONARY(COMMAND_STAT);
|
|
|
|
// setup the QS filters...
|
|
QS_GLB_FILTER(QP::QS_SM_RECORDS); // state machine records
|
|
//QS_GLB_FILTER(QP::QS_AO_RECORDS); // active object records
|
|
QS_GLB_FILTER(QP::QS_UA_RECORDS); // all user records
|
|
}
|
|
//............................................................................
|
|
void BSP::displayPhilStat(uint8_t n, char const *stat) {
|
|
if (stat[0] == 'h') { // is Philo hungry?
|
|
P1OUT |= LED1; // turn LED1 on
|
|
}
|
|
else {
|
|
P1OUT &= ~LED1; // turn LED1 off
|
|
}
|
|
|
|
QS_BEGIN_ID(PHILO_STAT, AO_Philo[n]->m_prio) // app-specific record begin
|
|
QS_U8(1, n); // Philosopher number
|
|
QS_STR(stat); // Philosopher status
|
|
QS_END()
|
|
}
|
|
void BSP::displayPaused(uint8_t paused) {
|
|
// not enouhg LEDs to implement this feature
|
|
if (paused != 0U) {
|
|
//P1OUT |= LED1;
|
|
}
|
|
else {
|
|
//P1OUT &= ~LED1;
|
|
}
|
|
}
|
|
//............................................................................
|
|
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
|
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
//
|
|
l_rnd = l_rnd * ((uint32_t)3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
//............................................................................
|
|
void BSP::randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
//............................................................................
|
|
void BSP::terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
} // namespace DPP
|
|
|
|
//............................................................................
|
|
extern "C" Q_NORETURN Q_onAssert(char const * const module, int_t const loc) {
|
|
// implement the error-handling policy for your application!!!
|
|
QF_INT_DISABLE(); // disable all interrupts
|
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
|
|
|
// write invalid password to WDT: cause a password-validation RESET
|
|
WDTCTL = 0xDEAD;
|
|
}
|
|
|
|
// namespace QP **************************************************************
|
|
namespace QP {
|
|
|
|
// QF callbacks ==============================================================
|
|
void QF::onStartup(void) {
|
|
TA0CCTL0 = CCIE; // CCR0 interrupt enabled
|
|
TA0CCR0 = BSP_MCK / DPP::BSP::TICKS_PER_SEC;
|
|
TA0CTL = TASSEL_2 | MC_1 | TACLR; // SMCLK, upmode, clear TAR
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
void QV::onIdle(void) { // NOTE: called with interrutps DISABLED, see NOTE1
|
|
// toggle LED2 on and then off, see NOTE2
|
|
P4OUT |= LED2; // turn LED2 on
|
|
P4OUT &= ~LED2; // turn LED2 off
|
|
|
|
#ifdef Q_SPY
|
|
QF_INT_ENABLE();
|
|
QS::rxParse(); // parse all the received bytes
|
|
|
|
if ((UCA1STAT & UCBUSY) == 0U) { // TX NOT busy?
|
|
|
|
uint16_t b;
|
|
|
|
QF_INT_DISABLE();
|
|
b = QS::getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) {
|
|
UCA1TXBUF = (uint8_t)b; // stick the byte to the TX BUF
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
// you might need to customize the clock management for your application,
|
|
// see the datasheet for your particular MSP430 MCU.
|
|
//
|
|
__low_power_mode_1(); // Enter LPM1; also ENABLES interrupts
|
|
#else
|
|
QF_INT_ENABLE(); // just enable interrupts
|
|
#endif
|
|
}
|
|
|
|
// QS callbacks ==============================================================
|
|
#ifdef Q_SPY
|
|
|
|
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
|
|
__interrupt void USCI_A1_ISR(void); /* prototype */
|
|
#pragma vector=USCI_A1_VECTOR
|
|
__interrupt void USCI_A1_ISR(void)
|
|
#elif defined(__GNUC__)
|
|
__attribute__ ((interrupt(USCI_A1_VECTOR)))
|
|
void USCI_A1_ISR(void)
|
|
#else
|
|
#error MSP430 compiler not supported!
|
|
#endif
|
|
{
|
|
if (UCA1IV == 2) {
|
|
uint16_t b = UCA1RXBUF;
|
|
QP::QS::rxPut(b);
|
|
}
|
|
}
|
|
//............................................................................
|
|
bool QS::onStartup(void const *arg) {
|
|
static uint8_t qsBuf[256]; // buffer for QS; RAM is tight!
|
|
static uint8_t qsRxBuf[80]; // buffer for QS receive channel
|
|
//uint16_t tmp;
|
|
|
|
initBuf(qsBuf, sizeof(qsBuf));
|
|
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
// USCI setup code...
|
|
P4SEL |= (RXD | TXD); // select the UART function for the pins
|
|
UCA1CTL1 |= UCSWRST; // reset USCI state machine
|
|
UCA1CTL1 |= UCSSEL_2; // choose the SMCLK clock
|
|
#if 1 // 9600 baud rate
|
|
UCA1BR0 = 6; // 1MHz 9600 (see User's Guide)
|
|
UCA1BR1 = 0; // 1MHz 9600 */
|
|
// modulationUCBRSx=0, UCBRFx=0, oversampling
|
|
UCA1MCTL = UCBRS_0 | UCBRF_13 | UCOS16;
|
|
#else // 115200 baud rate
|
|
UCA1BR0 = 9; // 1MHz 115200 (see User's Guide)
|
|
UCA1BR1 = 0; // 1MHz 115200
|
|
UCA1MCTL |= UCBRS_1 | UCBRF_0; // modulation UCBRSx=1, UCBRFx=0
|
|
#endif
|
|
UCA1CTL1 &= ~UCSWRST; // initialize USCI state machine
|
|
UCA1IE |= UCRXIE; // Enable USCI_A1 RX interrupt
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts DISABLED
|
|
if ((TA0CTL & TAIFG) == 0U) { /* interrupt not pending? */
|
|
return DPP::QS_tickTime_ + TA0R;
|
|
}
|
|
else { /* the rollover occured, but the timerA_ISR did not run yet */
|
|
return DPP::QS_tickTime_
|
|
+ (((BSP_SMCLK/8U) + DPP::BSP::TICKS_PER_SEC/2U)
|
|
/ DPP::BSP::TICKS_PER_SEC) + 1U
|
|
+ TA0R;
|
|
}
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t b;
|
|
QF_INT_DISABLE();
|
|
while ((b = getByte()) != QS_EOD) { // next QS byte available?
|
|
QF_INT_ENABLE();
|
|
while ((UCA1STAT & UCBUSY) != 0U) { /* TX busy? */
|
|
}
|
|
UCA1TXBUF = (uint8_t)b; /* stick the byte to the TX BUF */
|
|
QF_INT_DISABLE();
|
|
}
|
|
QF_INT_ENABLE();
|
|
}
|
|
//............................................................................
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
void QS::onReset(void) {
|
|
/* write invalid password to WDT: cause a password-validation RESET */
|
|
WDTCTL = 0xDEAD;
|
|
}
|
|
//............................................................................
|
|
//! callback function to execute a uesr command (to be implemented in BSP)
|
|
void QS::onCommand(uint8_t cmdId, uint32_t param1,
|
|
uint32_t param2, uint32_t param3)
|
|
{
|
|
(void)cmdId;
|
|
(void)param1;
|
|
(void)param2;
|
|
(void)param3;
|
|
QS_BEGIN_ID(DPP::COMMAND_STAT, 0U)
|
|
QS_U8(2, cmdId);
|
|
QS_U32(8, param1);
|
|
QS_U32(8, param2);
|
|
QS_U32(8, param3);
|
|
QS_END()
|
|
}
|
|
|
|
#endif // Q_SPY
|
|
|
|
} // namespace QP
|
|
|
|
//============================================================================
|
|
// NOTE1:
|
|
// With the cooperative QV kernel for MSP430, it is necessary to explicitly
|
|
// turn the low-power mode OFF in the interrupt, because the return
|
|
// from the interrupt will restore the CPU status register, which will
|
|
// re-enter the low-power mode. This, in turn, will prevent the QV event-loop
|
|
// from running.
|
|
//
|
|
// NOTE2:
|
|
// One of the LEDs is used to visualize the idle loop activity. The brightness
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
// execution time contributes to the brightness of the User LED.
|
|
//
|