2020-10-01 12:50:17 -04:00

464 lines
16 KiB
C++

///***************************************************************************
// Product: DPP example, NUCLEO-H743ZI board, cooperative QV kernel
// Last updated for version 6.9.1
// Last updated on 2020-09-21
//
// Q u a n t u m L e a P s
// ------------------------
// Modern Embedded Software
//
// Copyright (C) 2005-2020 Quantum Leaps. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <www.gnu.org/licenses>.
//
// Contact information:
// <www.state-machine.com/licensing>
// <info@state-machine.com>
//****************************************************************************
#include "qpcpp.hpp"
#include "dpp.hpp"
#include "bsp.hpp"
/* STM32CubeH7 include files */
#include "stm32h7xx_hal.h"
#include "stm32h7xx_nucleo_144.h"
// add other drivers if necessary...
Q_DEFINE_THIS_FILE // define the name of this file for assertions
// namespace DPP *************************************************************
namespace DPP {
// Local-scope objects -------------------------------------------------------
static uint32_t l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static uint8_t const l_SysTick_Handler = (uint8_t)0;
static uint8_t const l_EXTI0_IRQHandler = (uint8_t)0;
static UART_HandleTypeDef l_uartHandle;
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
PAUSED_STAT,
COMMAND_STAT
};
#endif
// ISRs used in this project =================================================
extern "C" {
//............................................................................
void SysTick_Handler(void); // prototype
void SysTick_Handler(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = BSP_PB_GetState(BUTTON_KEY); // read the Key button
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if (tmp != 0U) { // debounced user button state changed?
if (buttons.depressed != 0U) { // user button depressed?
static QP::QEvt const pauseEvt = { DPP::PAUSE_SIG, 0U, 0U};
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else { // the button is released
static QP::QEvt const serveEvt = { DPP::SERVE_SIG, 0U, 0U};
QP::QF::PUBLISH(&serveEvt, &l_SysTick_Handler);
}
}
}
//............................................................................
void USART3_IRQHandler(void); // prototype
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF and is not disabled. Such ISRs cannot post or publish events.
//
void USART3_IRQHandler(void) {
// is RX register NOT empty?
if ((DPP::l_uartHandle.Instance->ISR & USART_ISR_RXNE) != 0) {
uint32_t b = DPP::l_uartHandle.Instance->RDR;
QP::QS::rxPut(b);
DPP::l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE; // clear interrupt
}
}
#endif // Q_SPY
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() has been already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
SCB_EnableICache(); // Enable I-Cache
SCB_EnableDCache(); // Enable D-Cache
// Configure Flash prefetch and Instr. cache through ART accelerator
#if (ART_ACCLERATOR_ENABLE != 0)
__HAL_FLASH_ART_ENABLE();
#endif // ART_ACCLERATOR_ENABLE
// configure the FPU usage by choosing one of the options...
#if 1
// OPTION 1:
// Use the automatic FPU state preservation and the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in more than one task or
// in any ISRs. This setting is the safest and recommended, but requires
// extra stack space and CPU cycles.
//
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
#else
// OPTION 2:
// Do NOT to use the automatic FPU state preservation and
// do NOT to use the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in ONE task only and not
// in any ISR. This setting is very efficient, but if more than one task
// (or ISR) start using the FPU, this can lead to corruption of the
// FPU registers. This option should be used with CAUTION.
//
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
#endif
/* Configure the LEDs */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
// Configure the User Button in GPIO Mode
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
//...
BSP::randomSeed(1234U);
// initialize the QS software tracing...
if (!QS_INIT(nullptr)) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_EXTI0_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(PAUSED_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
// setup the QS filters...
QS_GLB_FILTER(QP::QS_SM_RECORDS); // state machine records
QS_GLB_FILTER(QP::QS_AO_RECORDS); // active object records
QS_GLB_FILTER(QP::QS_UA_RECORDS); // all user records
}
/*..........................................................................*/
void BSP::ledOn(void) {
BSP_LED_On(LED1);
}
/*..........................................................................*/
void BSP::ledOff(void) {
BSP_LED_Off(LED1);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
if (stat[0] == 'e') {
BSP_LED_On(LED1);
}
else {
BSP_LED_Off(LED1);
}
QS_BEGIN_ID(PHILO_STAT, AO_Philo[n]->m_prio) // app-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END() // application-specific record end
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused != 0U) {
BSP_LED_On(LED2);
}
else {
BSP_LED_Off(LED2);
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// flating point code is to exercise the FPU
double volatile x = 3.1415926F;
x = x + 2.7182818F;
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
SysTick_Config(SystemCoreClock / DPP::BSP::TICKS_PER_SEC);
// assign all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE1
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(USART3_IRQn, 0U); // kernel unaware interrupt
NVIC_SetPriority(SysTick_IRQn, QF_AWARE_ISR_CMSIS_PRI + 1U);
// ...
// enable IRQs...
NVIC_EnableIRQ(EXTI0_IRQn);
#ifdef Q_SPY
NVIC_EnableIRQ(USART3_IRQn); // UART interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QV::onIdle(void) { // called with interrupts disabled, see NOTE01
// toggle the User LED on and then off, see NOTE01
BSP_LED_On(LED3);
BSP_LED_On(LED3);
#ifdef Q_SPY
QF_INT_ENABLE();
QS::rxParse(); // parse all the received bytes
if ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) {//TXE empty?
uint16_t b;
QF_INT_DISABLE();
b = QS::getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { // not End-Of-Data?
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M MCU.
//
// !!!CAUTION!!!
// The WFI instruction stops the CPU clock, which unfortunately disables
// the JTAG port, so the ST-Link debugger can no longer connect to the
// board. For that reason, the call to __WFI() has to be used with CAUTION.
//
// NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
// reset the board, then connect with ST-Link Utilities and erase the part.
// The trick with BOOT(0) is it gets the part to run the System Loader
// instead of your broken code. When done disconnect BOOT0, and start over.
//QV_CPU_SLEEP(); // Wait-For-Interrupt
QF_INT_ENABLE(); // just enable interrupts
#else
QF_INT_ENABLE(); // just enable interrupts
#endif
}
//............................................................................
extern "C" Q_NORETURN Q_onAssert(char const * const module, int_t const loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
#ifndef NDEBUG
// light up LED
BSP_LED_On(LED1);
// for debugging, hang on in an endless loop...
for (;;) {
}
#endif
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
DPP::l_uartHandle.Instance = USART3;
DPP::l_uartHandle.Init.BaudRate = 115200;
DPP::l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B;
DPP::l_uartHandle.Init.StopBits = UART_STOPBITS_1;
DPP::l_uartHandle.Init.Parity = UART_PARITY_NONE;
DPP::l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
DPP::l_uartHandle.Init.Mode = UART_MODE_TX_RX;
DPP::l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&DPP::l_uartHandle) != HAL_OK) {
return false; // return failure
}
// Set UART to receive 1 byte at a time via interrupt
HAL_UART_Receive_IT(&DPP::l_uartHandle, (uint8_t *)qsRxBuf, 1);
// NOTE: wait till QF::onStartup() to enable UART interrupt in NVIC
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
// while TXE not empty
while ((DPP::l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) {
}
DPP::l_uartHandle.Instance->TDR = (b & 0xFFU); // put into TDR
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId, uint32_t param1,
uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
QS_BEGIN_ID(DPP::COMMAND_STAT, 0U) // app-specific record
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_END()
if (cmdId == 10U) {
assert_failed("QS_onCommand", 11);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE1:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
// with the numerical values of priorities equal or higher than
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
// macros or any other QF/QK services. These ISRs are "QF-aware".
//
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
// level (i.e., with the numerical values of priorities less than
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
// Such "QF-unaware" ISRs cannot call any QF services. The only mechanism
// by which a "QF-unaware" ISR can communicate with the QF framework is by
// triggering a "QF-aware" ISR, which can post/publish events.
//
// NOTE2:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//