mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-28 06:02:56 +08:00
386 lines
13 KiB
C++
386 lines
13 KiB
C++
//****************************************************************************
|
|
// Product: DPP example, STM32F4-Discovery board, ThreadX kernel
|
|
// Last updated for version 5.6.2
|
|
// Last updated on 2016-03-12
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ---------------------------
|
|
// innovating embedded systems
|
|
//
|
|
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
//
|
|
// This program is open source software: you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Alternatively, this program may be distributed and modified under the
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
// the GNU General Public License and are specifically designed for
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// Contact information:
|
|
// http://www.state-machine.com
|
|
// mailto:info@state-machine.com
|
|
//****************************************************************************
|
|
#include "qpcpp.h"
|
|
#include "dpp.h"
|
|
#include "bsp.h"
|
|
|
|
#include "stm32f4xx.h" // CMSIS-compliant header file for the MCU used
|
|
#include "stm32f4xx_exti.h"
|
|
#include "stm32f4xx_gpio.h"
|
|
#include "stm32f4xx_rcc.h"
|
|
#include "stm32f4xx_usart.h"
|
|
// add other drivers if necessary...
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
// namespace DPP *************************************************************
|
|
namespace DPP {
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
#define LED_GPIO_PORT GPIOD
|
|
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
|
|
|
|
#define LED4_PIN GPIO_Pin_12
|
|
#define LED3_PIN GPIO_Pin_13
|
|
#define LED5_PIN GPIO_Pin_14
|
|
#define LED6_PIN GPIO_Pin_15
|
|
|
|
#define BTN_GPIO_PORT GPIOA
|
|
#define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA
|
|
#define BTN_B1 GPIO_Pin_0
|
|
|
|
static unsigned l_rnd; // random seed
|
|
|
|
#ifdef Q_SPY
|
|
QP::QSTimeCtr QS_tickTime_;
|
|
QP::QSTimeCtr QS_tickPeriod_;
|
|
|
|
enum AppRecords { // application-specific trace records
|
|
PHILO_STAT = QP::QS_USER
|
|
};
|
|
#endif
|
|
|
|
extern "C" {
|
|
|
|
// ISRs used in this project =================================================
|
|
|
|
} // extern "C"
|
|
|
|
// BSP functions =============================================================
|
|
void BSP_init(void) {
|
|
// NOTE: SystemInit() already called from the startup code
|
|
// but SystemCoreClock needs to be updated
|
|
//
|
|
SystemCoreClockUpdate();
|
|
|
|
// Explictily Disable the automatic FPU state preservation as well as
|
|
// the FPU lazy stacking
|
|
//
|
|
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
|
|
|
|
// Initialize thr port for the LEDs
|
|
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE);
|
|
|
|
// GPIO Configuration for the LEDs...
|
|
GPIO_InitTypeDef GPIO_struct;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
|
|
GPIO_struct.GPIO_Pin = LED3_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off
|
|
|
|
GPIO_struct.GPIO_Pin = LED4_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off
|
|
|
|
GPIO_struct.GPIO_Pin = LED5_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off
|
|
|
|
GPIO_struct.GPIO_Pin = LED6_PIN;
|
|
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
|
|
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
|
|
|
|
// Initialize thr port for Button
|
|
RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE);
|
|
|
|
// GPIO Configuration for the Button...
|
|
GPIO_struct.GPIO_Pin = BTN_B1;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_IN;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(BTN_GPIO_PORT, &GPIO_struct);
|
|
|
|
BSP_randomSeed(1234U);
|
|
|
|
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
|
|
Q_ERROR();
|
|
}
|
|
}
|
|
//............................................................................
|
|
void BSP_displayPhilStat(uint8_t n, char const *stat) {
|
|
// exercise the FPU with some floating point computations
|
|
float volatile x;
|
|
x = 3.1415926F;
|
|
x = x + 2.7182818F;
|
|
|
|
if (stat[0] == 'h') {
|
|
LED_GPIO_PORT->BSRRL = LED3_PIN; // turn LED on
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off
|
|
}
|
|
if (stat[0] == 'e') {
|
|
LED_GPIO_PORT->BSRRL = LED5_PIN; // turn LED on
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED on
|
|
}
|
|
(void)n; // unused parameter (in all but Spy build configuration)
|
|
|
|
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
|
|
QS_U8(1, n); // Philosopher number
|
|
QS_STR(stat); // Philosopher status
|
|
QS_END()
|
|
}
|
|
//............................................................................
|
|
void BSP_displayPaused(uint8_t paused) {
|
|
if (paused) {
|
|
LED_GPIO_PORT->BSRRL = LED4_PIN; // turn LED on
|
|
}
|
|
else {
|
|
LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED on
|
|
}
|
|
}
|
|
//............................................................................
|
|
uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator
|
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
//
|
|
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
|
|
|
|
return l_rnd >> 8;
|
|
}
|
|
//............................................................................
|
|
void BSP_randomSeed(uint32_t seed) {
|
|
l_rnd = seed;
|
|
}
|
|
//............................................................................
|
|
void BSP_terminate(int16_t result) {
|
|
(void)result;
|
|
}
|
|
|
|
} // namespace DPP
|
|
|
|
|
|
// namespace QP **************************************************************
|
|
namespace QP {
|
|
|
|
static TX_TIMER l_tick_timer; // ThreadX timer to call QF::tickX_()
|
|
|
|
#ifdef Q_SPY
|
|
// ThreadX thread and thread function for QS output, see NOTE1
|
|
static TX_THREAD l_qs_output_thread;
|
|
static void qs_thread_function(ULONG thread_input);
|
|
static ULONG qs_thread_stkSto[64];
|
|
#endif
|
|
|
|
// QF callbacks ==============================================================
|
|
void QF::onStartup(void) {
|
|
//
|
|
// NOTE:
|
|
// This application uses the ThreadX timer to periodically call
|
|
// the QF_tickX_(0) function. Here, only the clock tick rate of 0
|
|
// is used, but other timers can be used to call QF_tickX_() for
|
|
// other clock tick rates, if needed.
|
|
//
|
|
// The choice of a ThreadX timer is not the only option. Applications
|
|
// might choose to call QF_tickX_() directly from timer interrupts
|
|
// or from active object(s).
|
|
//
|
|
Q_ALLEGE(tx_timer_create(&l_tick_timer, // ThreadX timer object
|
|
"QF", // name of the timer
|
|
(VOID (*)(ULONG))&QP::QF::tickX_, // expiration function
|
|
0U, // expiration function input (tick rate)
|
|
1U, // initial ticks
|
|
1U, // reschedule ticks
|
|
TX_AUTO_ACTIVATE) // automatically activate timer
|
|
== TX_SUCCESS);
|
|
|
|
#ifdef Q_SPY
|
|
// start a ThreadX timer to perform QS output. See NOTE1...
|
|
Q_ALLEGE(tx_thread_create(&l_qs_output_thread, // thread control block
|
|
"QS", // thread name
|
|
&qs_thread_function, // thread function
|
|
(ULONG)0, // thread input (unsued)
|
|
qs_thread_stkSto, // stack start
|
|
sizeof(qs_thread_stkSto), // stack size in bytes
|
|
TX_MAX_PRIORITIES - 1, // ThreadX priority (lowest possible)
|
|
TX_MAX_PRIORITIES - 1, // preemption threshold disabled
|
|
TX_NO_TIME_SLICE,
|
|
TX_AUTO_START)
|
|
== TX_SUCCESS);
|
|
#endif // Q_SPY
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup(void) {
|
|
}
|
|
|
|
//............................................................................
|
|
extern "C" void Q_onAssert(char const *module, int loc) {
|
|
//
|
|
// NOTE: add here your application-specific error handling
|
|
//
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
// QS callbacks ==============================================================
|
|
#ifdef Q_SPY
|
|
|
|
//............................................................................
|
|
static void qs_thread_function(ULONG /*thread_input*/) { // see NOTE1
|
|
for (;;) {
|
|
// turn the LED6 on an off to visualize the QS activity
|
|
LED_GPIO_PORT->BSRRL = LED6_PIN; // turn LED on
|
|
__NOP(); // wait a little to actually see the LED glow
|
|
__NOP();
|
|
__NOP();
|
|
__NOP();
|
|
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
|
|
|
|
if ((USART2->SR & 0x80U) != 0U) { // is TXE empty?
|
|
uint16_t b;
|
|
QF_CRIT_STAT_TYPE intStat;
|
|
|
|
QF_CRIT_ENTRY(intStat);
|
|
b = QP::QS::getByte();
|
|
QF_CRIT_EXIT(intStat);
|
|
|
|
if (b != QP::QS_EOD) { // not End-Of-Data?
|
|
USART2->DR = (b & 0xFFU); // put into the DR register
|
|
}
|
|
}
|
|
// no blocking in this thread; see NOTE1
|
|
}
|
|
}
|
|
|
|
//............................................................................
|
|
bool QS::onStartup(void const *arg) {
|
|
static uint8_t qsBuf[1024]; // buffer for Quantum Spy
|
|
initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
GPIO_InitTypeDef GPIO_struct;
|
|
USART_InitTypeDef USART_struct;
|
|
|
|
// enable peripheral clock for USART2
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
|
|
|
|
// GPIOA clock enable
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
|
|
|
|
// GPIOA Configuration: USART2 TX on PA2
|
|
GPIO_struct.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_struct.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_struct.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ;
|
|
GPIO_Init(GPIOA, &GPIO_struct);
|
|
|
|
// Connect USART2 pins to AF2
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); // TX = PA2
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // RX = PA3
|
|
|
|
USART_struct.USART_BaudRate = 115200;
|
|
USART_struct.USART_WordLength = USART_WordLength_8b;
|
|
USART_struct.USART_StopBits = USART_StopBits_1;
|
|
USART_struct.USART_Parity = USART_Parity_No;
|
|
USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_struct.USART_Mode = USART_Mode_Tx;
|
|
USART_Init(USART2, &USART_struct);
|
|
|
|
USART_Cmd(USART2, ENABLE); // enable USART2
|
|
|
|
// setup the QS filters...
|
|
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
|
|
QS_FILTER_ON(QS_QEP_STATE_EXIT);
|
|
QS_FILTER_ON(QS_QEP_STATE_INIT);
|
|
QS_FILTER_ON(QS_QEP_INIT_TRAN);
|
|
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
|
|
QS_FILTER_ON(QS_QEP_TRAN);
|
|
QS_FILTER_ON(QS_QEP_IGNORED);
|
|
QS_FILTER_ON(QS_QEP_DISPATCH);
|
|
QS_FILTER_ON(QS_QEP_UNHANDLED);
|
|
|
|
QS_FILTER_ON(DPP::PHILO_STAT);
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // not set?
|
|
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
|
|
}
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
|
|
- static_cast<QSTimeCtr>(SysTick->VAL);
|
|
}
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t b;
|
|
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
|
|
while ((USART2->SR & USART_FLAG_TXE) == 0U) { // while TXE not empty
|
|
}
|
|
USART2->DR = (b & 0xFFU); // put into the DR register
|
|
}
|
|
}
|
|
//............................................................................
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
void QS::onReset(void) {
|
|
//TBD
|
|
}
|
|
//............................................................................
|
|
//! callback function to execute a uesr command (to be implemented in BSP)
|
|
void QS::onCommand(uint8_t cmdId, uint32_t param) {
|
|
(void)cmdId;
|
|
(void)param;
|
|
//TBD
|
|
}
|
|
#endif // Q_SPY
|
|
//----------------------------------------------------------------------------
|
|
|
|
} // namespace QP
|
|
|
|
//****************************************************************************
|
|
// NOTE1:
|
|
// This application uses the ThreadX thread of the lowest priority to perform
|
|
// the QS data output to the host. This is not the only choice available, and
|
|
// other applications might choose to peform the QS output some other way.
|
|
//
|
|
// The lowest-priority thread does not block, so in effect, it becomes the
|
|
// idle loop. This presents no problems to ThreadX - its idle task in the
|
|
// scheduler does not need to run.
|
|
//
|
|
|