mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-02-04 06:13:00 +08:00
80d9bcd6fb
Added QP Functional Safety (FuSa) Subsystem Memory Isolation with MPU Added QAsm abstract state machine base class Added memory marker to QEvt and rearranged memory layout Updated: QP-FreeRTOS, QP-ESP-IDF,QP-Zephyr Added drift-free ticking for QP-POSIX Reorganized documentation Updated 3rd_party
490 lines
17 KiB
C++
490 lines
17 KiB
C++
//============================================================================
|
|
// Product: DPP example, NUCLEO-H743ZI board, embOS RTOS kernel
|
|
// Last updated for version 7.3.0
|
|
// Last updated on 2023-08-29
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ------------------------
|
|
// Modern Embedded Software
|
|
//
|
|
// Copyright (C) 2005 Quantum Leaps, LLC. <state-machine.com>
|
|
//
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
|
|
//
|
|
// This software is dual-licensed under the terms of the open source GNU
|
|
// General Public License version 3 (or any later version), or alternatively,
|
|
// under the terms of one of the closed source Quantum Leaps commercial
|
|
// licenses.
|
|
//
|
|
// The terms of the open source GNU General Public License version 3
|
|
// can be found at: <www.gnu.org/licenses/gpl-3.0>
|
|
//
|
|
// The terms of the closed source Quantum Leaps commercial licenses
|
|
// can be found at: <www.state-machine.com/licensing>
|
|
//
|
|
// Redistributions in source code must retain this top-level comment block.
|
|
// Plagiarizing this software to sidestep the license obligations is illegal.
|
|
//
|
|
// Contact information:
|
|
// <www.state-machine.com/licensing>
|
|
// <info@state-machine.com>
|
|
//============================================================================
|
|
#include "qpcpp.hpp" // QP/C++ real-time embedded framework
|
|
#include "dpp.hpp" // DPP Application interface
|
|
#include "bsp.hpp" // Board Support Package
|
|
|
|
// STM32CubeH7 include files
|
|
//#include "stm32h7xx_it.h"
|
|
|
|
#include "stm32h7xx_hal.h"
|
|
#include "stm32h7xx_nucleo_144.h"
|
|
// add other drivers if necessary...
|
|
|
|
//============================================================================
|
|
namespace { // unnamed namespace for local stuff with internal linkage
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
static OS_TICK_HOOK l_tick_hook;
|
|
static std::uint32_t l_rndSeed;
|
|
|
|
#ifdef Q_SPY
|
|
|
|
// QS source IDs
|
|
static QP::QSpyId const l_embos_ticker = { 0U };
|
|
|
|
static UART_HandleTypeDef l_uartHandle;
|
|
QP::QSTimeCtr QS_tickTime_;
|
|
QP::QSTimeCtr QS_tickPeriod_;
|
|
|
|
enum AppRecords { // application-specific trace records
|
|
PHILO_STAT = QP::QS_USER,
|
|
PAUSED_STAT,
|
|
};
|
|
|
|
#endif
|
|
|
|
} // unnamed namespace
|
|
|
|
//============================================================================
|
|
// Error handler
|
|
extern "C" {
|
|
|
|
Q_NORETURN Q_onError(char const * const module, int const id) {
|
|
// NOTE: this implementation of the error handler is intended only
|
|
// for debugging and MUST be changed for deployment of the application
|
|
// (assuming that you ship your production code with assertions enabled).
|
|
Q_UNUSED_PAR(module);
|
|
Q_UNUSED_PAR(id);
|
|
QS_ASSERTION(module, id, 10000U); // report assertion to QS
|
|
|
|
#ifndef NDEBUG
|
|
// light up LED
|
|
BSP_LED_On(LED1);
|
|
// for debugging, hang on in an endless loop...
|
|
for (;;) {
|
|
}
|
|
#else
|
|
NVIC_SystemReset();
|
|
for (;;) { // explicitly "no-return"
|
|
}
|
|
#endif
|
|
}
|
|
//............................................................................
|
|
void assert_failed(char const * const module, int const id); // prototype
|
|
void assert_failed(char const * const module, int const id) {
|
|
Q_onError(module, id);
|
|
}
|
|
|
|
// ISRs used in the application ==============================================
|
|
//............................................................................
|
|
#ifdef Q_SPY
|
|
|
|
// ISR for receiving bytes from the QSPY Back-End
|
|
// NOTE: This ISR is "kernel-unaware" meaning that it does not interact with
|
|
// the FreeRTOS or QP and is not disabled. Such ISRs don't need to call
|
|
// portEND_SWITCHING_ISR(() at the end, but they also cannot call any
|
|
// embOS or QP APIs.
|
|
void USART3_IRQHandler(void); // prototype
|
|
void USART3_IRQHandler(void) {
|
|
// is RX register NOT empty?
|
|
if ((l_uartHandle.Instance->ISR & USART_ISR_RXNE_RXFNE) != 0U) {
|
|
std::uint32_t b = l_uartHandle.Instance->RDR;
|
|
QP::QS::rxPut(b);
|
|
l_uartHandle.Instance->ISR &= ~USART_ISR_RXNE_RXFNE; // clear int.
|
|
}
|
|
}
|
|
#endif // Q_SPY
|
|
|
|
// Application hooks used in this project ====================================
|
|
|
|
// embOS application hooks =================================================
|
|
static void tick_handler(void) { // signature of embOS tick hook routine
|
|
|
|
// process time events at rate 0
|
|
QP::QTimeEvt::TICK_X(0U, &l_embos_ticker);
|
|
|
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
// and Michael Barr, page 71.
|
|
static struct {
|
|
std::uint32_t depressed;
|
|
std::uint32_t previous;
|
|
} buttons = { 0U, 0U };
|
|
|
|
std::uint32_t current = BSP_PB_GetState(BUTTON_KEY); // read the Key button
|
|
std::uint32_t tmp = buttons.depressed; // save debounced depressed buttons
|
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
|
buttons.depressed &= (buttons.previous | current); // clear released
|
|
buttons.previous = current; // update the history
|
|
tmp ^= buttons.depressed; // changed debounced depressed
|
|
current = buttons.depressed;
|
|
|
|
if (tmp != 0U) { // debounced Key button state changed?
|
|
if (current != 0U) { // is PB0 depressed?
|
|
static QP::QEvt const pauseEvt(APP::PAUSE_SIG);
|
|
QP::QActive::PUBLISH(&pauseEvt, &l_embos_ticker);
|
|
}
|
|
else { // the button is released
|
|
static QP::QEvt const serveEvt(APP::SERVE_SIG);
|
|
QP::QActive::PUBLISH(&serveEvt, &l_embos_ticker);
|
|
}
|
|
}
|
|
|
|
#ifdef Q_SPY
|
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
|
#endif
|
|
}
|
|
|
|
//............................................................................
|
|
// OS_Idle() function overridden from RTOSInit_STM32F4x_CMSIS.c
|
|
//
|
|
// Function description
|
|
// This is basically the "core" of the embOS idle loop.
|
|
// This core loop can be changed, but:
|
|
// The idle loop does not have a stack of its own, therefore no
|
|
// functionality should be implemented that relies on the stack
|
|
// to be preserved. However, a simple program loop can be programmed
|
|
// (like toggling an output or incrementing a counter)
|
|
//
|
|
void OS_Idle(void) {
|
|
while (1) {
|
|
|
|
// toggle the User LED on and then off, see NOTE2
|
|
QF_INT_DISABLE();
|
|
BSP_LED_On(LED3);
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
QF_INT_DISABLE();
|
|
QP::QS::rxParse(); // parse all the received bytes
|
|
QF_INT_ENABLE();
|
|
|
|
if ((l_uartHandle.Instance->ISR & UART_FLAG_TXE) != 0U) { // TXE empty?
|
|
QF_INT_DISABLE();
|
|
uint16_t b = QP::QS::getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) { // not End-Of-Data?
|
|
l_uartHandle.Instance->TDR = b; // put into TDR
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
// you might need to customize the clock management for your application,
|
|
// see the datasheet for your particular Cortex-M MCU.
|
|
//
|
|
// !!!CAUTION!!!
|
|
// The WFI instruction stops the CPU clock, which unfortunately disables
|
|
// the JTAG port, so the ST-Link debugger can no longer connect to the
|
|
// board. For that reason, the call to __WFI() has to be used with CAUTION.
|
|
//
|
|
// NOTE: If you find your board "frozen" like this, strap BOOT0 to VDD and
|
|
// reset the board, then connect with ST-Link Utilities and erase the part.
|
|
// The trick with BOOT(0) is it gets the part to run the System Loader
|
|
// instead of your broken code. When done disconnect BOOT0, and start over.
|
|
//
|
|
//__WFI(); // Wait-For-Interrupt
|
|
#endif
|
|
}
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
// BSP functions =============================================================
|
|
namespace BSP {
|
|
|
|
void init() {
|
|
// Configure the MPU to prevent NULL-pointer dereferencing ...
|
|
MPU->RBAR = 0x0U // base address (NULL)
|
|
| MPU_RBAR_VALID_Msk // valid region
|
|
| (MPU_RBAR_REGION_Msk & 7U); // region #7
|
|
MPU->RASR = (7U << MPU_RASR_SIZE_Pos) // 2^(7+1) region
|
|
| (0x0U << MPU_RASR_AP_Pos) // no-access region
|
|
| MPU_RASR_ENABLE_Msk; // region enable
|
|
MPU->CTRL = MPU_CTRL_PRIVDEFENA_Msk // enable background region
|
|
| MPU_CTRL_ENABLE_Msk; // enable the MPU
|
|
__ISB();
|
|
__DSB();
|
|
|
|
// enable the MemManage_Handler for MPU exception
|
|
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
|
|
|
|
// NOTE: SystemInit() has been already called from the startup code
|
|
// but SystemCoreClock needs to be updated
|
|
SystemCoreClockUpdate();
|
|
|
|
// NOTE: VFP (hardware Floating Point) unit is configured by embOS
|
|
|
|
// enable clock for to the peripherals used by this application...
|
|
SCB_EnableICache(); // enable I-Cache
|
|
SCB_EnableDCache(); // enable D-Cache
|
|
|
|
// configure Flash prefetch and Instr. cache through ART accelerator
|
|
#if (ART_ACCLERATOR_ENABLE != 0)
|
|
__HAL_FLASH_ART_ENABLE();
|
|
#endif // ART_ACCLERATOR_ENABLE
|
|
|
|
// Configure the LEDs
|
|
BSP_LED_Init(LED1);
|
|
BSP_LED_Init(LED2);
|
|
BSP_LED_Init(LED3);
|
|
|
|
// configure the User Button in GPIO Mode
|
|
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
|
|
|
|
BSP::randomSeed(1234U);
|
|
|
|
// initialize the QS software tracing...
|
|
if (!QS_INIT(nullptr)) {
|
|
Q_ERROR();
|
|
}
|
|
|
|
// dictionaries...
|
|
QS_OBJ_DICTIONARY(&l_embos_ticker);
|
|
QS_USR_DICTIONARY(PHILO_STAT);
|
|
QS_USR_DICTIONARY(PAUSED_STAT);
|
|
|
|
QS_ONLY(APP::produce_sig_dict());
|
|
|
|
// setup the QS filters...
|
|
QS_GLB_FILTER(QP::QS_ALL_RECORDS); // all records
|
|
QS_GLB_FILTER(-QP::QS_QF_TICK); // exclude the clock tick
|
|
}
|
|
//............................................................................
|
|
void start() {
|
|
// initialize event pools
|
|
static QF_MPOOL_EL(APP::TableEvt) smlPoolSto[2*APP::N_PHILO];
|
|
QP::QF::poolInit(smlPoolSto, sizeof(smlPoolSto), sizeof(smlPoolSto[0]));
|
|
|
|
// initialize publish-subscribe
|
|
static QP::QSubscrList subscrSto[APP::MAX_PUB_SIG];
|
|
QP::QActive::psInit(subscrSto, Q_DIM(subscrSto));
|
|
|
|
// start AOs/threads...
|
|
static QP::QEvt const *philoQueueSto[APP::N_PHILO][APP::N_PHILO];
|
|
static OS_STACKPTR int philoStack[APP::N_PHILO][128];
|
|
for (std::uint8_t n = 0U; n < APP::N_PHILO; ++n) {
|
|
APP::AO_Philo[n]->start(
|
|
n + 3U, // QP prio. of the AO
|
|
philoQueueSto[n], // event queue storage
|
|
Q_DIM(philoQueueSto[n]), // queue length [events]
|
|
philoStack[n], // stack storage
|
|
sizeof(philoStack[n])); // stack size [bytes]
|
|
}
|
|
|
|
static QP::QEvt const *tableQueueSto[APP::N_PHILO];
|
|
static OS_STACKPTR int tableStack[128];
|
|
APP::AO_Table->start(
|
|
APP::N_PHILO + 7U, // QP prio. of the AO
|
|
tableQueueSto, // event queue storage
|
|
Q_DIM(tableQueueSto), // queue length [events]
|
|
tableStack, // stack storage
|
|
sizeof(tableStack)); // stack size [bytes]
|
|
}
|
|
//............................................................................
|
|
void displayPhilStat(std::uint8_t n, char const *stat) {
|
|
Q_UNUSED_PAR(n);
|
|
|
|
if (stat[0] == 'e') {
|
|
BSP_LED_On(LED1);
|
|
}
|
|
else {
|
|
BSP_LED_Off(LED1);
|
|
}
|
|
|
|
// app-specific trace record...
|
|
QS_BEGIN_ID(PHILO_STAT, APP::AO_Table->getPrio())
|
|
QS_U8(1, n); // Philosopher number
|
|
QS_STR(stat); // Philosopher status
|
|
QS_END()
|
|
}
|
|
//............................................................................
|
|
void displayPaused(std::uint8_t const paused) {
|
|
if (paused != 0U) {
|
|
BSP_LED_On(LED2);
|
|
}
|
|
else {
|
|
BSP_LED_Off(LED2);
|
|
}
|
|
|
|
// application-specific trace record
|
|
QS_BEGIN_ID(PAUSED_STAT, APP::AO_Table->getPrio())
|
|
QS_U8(1, paused); // Paused status
|
|
QS_END()
|
|
}
|
|
//............................................................................
|
|
void randomSeed(std::uint32_t const seed) {
|
|
l_rndSeed = seed;
|
|
}
|
|
//............................................................................
|
|
std::uint32_t random() { // a very cheap pseudo-random-number generator
|
|
// Some floating point code is to exercise the VFP...
|
|
double volatile x = 3.1415926;
|
|
x = x + 2.7182818;
|
|
|
|
OS_TASK_EnterRegion(); // lock embOS scheduler
|
|
// "Super-Duper" Linear Congruential Generator (LCG)
|
|
// LCG(2^32, 3*7*11*13*23, 0, seed)
|
|
std::uint32_t rnd = l_rndSeed * (3U*7U*11U*13U*23U);
|
|
l_rndSeed = rnd; // set for the next time
|
|
OS_TASK_LeaveRegion(); // unlock embOS scheduler
|
|
|
|
return (rnd >> 8);
|
|
}
|
|
//............................................................................
|
|
void ledOn() {
|
|
BSP_LED_On(LED3);
|
|
}
|
|
//............................................................................
|
|
void ledOff() {
|
|
BSP_LED_Off(LED3);
|
|
}
|
|
//............................................................................
|
|
void terminate(int16_t result) {
|
|
Q_UNUSED_PAR(result);
|
|
}
|
|
|
|
} // namespace BSP
|
|
|
|
//============================================================================
|
|
|
|
namespace QP {
|
|
|
|
// QF callbacks --------------------------------------------------------------
|
|
|
|
void QF::onStartup() {
|
|
OS_TICK_AddHook(&l_tick_hook, &tick_handler);
|
|
|
|
#ifdef Q_SPY
|
|
NVIC_SetPriority(USART3_IRQn, 0U); // kernel unaware interrupt
|
|
NVIC_EnableIRQ(USART3_IRQn); // UART interrupt used for QS-RX
|
|
#endif
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup() {
|
|
}
|
|
|
|
// QS callbacks --------------------------------------------------------------
|
|
#ifdef Q_SPY
|
|
namespace QS {
|
|
|
|
//............................................................................
|
|
bool onStartup(void const *arg) {
|
|
Q_UNUSED_PAR(arg);
|
|
|
|
static std::uint8_t qsTxBuf[2*1024]; // buffer for QS-TX channel
|
|
initBuf(qsTxBuf, sizeof(qsTxBuf));
|
|
|
|
static std::uint8_t qsRxBuf[100]; // buffer for QS-RX channel
|
|
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
|
|
|
|
l_uartHandle.Instance = USART3;
|
|
l_uartHandle.Init.BaudRate = 115200;
|
|
l_uartHandle.Init.WordLength = UART_WORDLENGTH_8B;
|
|
l_uartHandle.Init.StopBits = UART_STOPBITS_1;
|
|
l_uartHandle.Init.Parity = UART_PARITY_NONE;
|
|
l_uartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
|
l_uartHandle.Init.Mode = UART_MODE_TX_RX;
|
|
l_uartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
|
|
if (HAL_UART_Init(&l_uartHandle) != HAL_OK) {
|
|
return 0U; // return failure
|
|
}
|
|
|
|
// Set UART to receive 1 byte at a time via interrupt
|
|
HAL_UART_Receive_IT(&l_uartHandle, (uint8_t *)qsRxBuf, 1);
|
|
// NOTE: wait till QF::onStartup() to enable UART interrupt in NVIC
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP::TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void onCleanup() {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr onGetTime() { // NOTE: invoked with interrupts DISABLED
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
//............................................................................
|
|
void onFlush() {
|
|
for (;;) {
|
|
QF_INT_DISABLE();
|
|
std::uint16_t b = getByte();
|
|
QF_INT_ENABLE();
|
|
|
|
if (b != QS_EOD) { // NOT end-of-data
|
|
// busy-wait as long as TX FIFO has data to transmit
|
|
while ((l_uartHandle.Instance->ISR & UART_FLAG_TXE) == 0U) {
|
|
QF_INT_ENABLE();
|
|
QF_CRIT_EXIT_NOP();
|
|
|
|
QF_INT_DISABLE();
|
|
}
|
|
// place the byte in the UART TDR register
|
|
l_uartHandle.Instance->TDR = b;
|
|
QF_INT_ENABLE();
|
|
}
|
|
else {
|
|
QF_INT_ENABLE();
|
|
break; // break out of the loop
|
|
}
|
|
}
|
|
}
|
|
//............................................................................
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
void onReset() {
|
|
NVIC_SystemReset();
|
|
}
|
|
//............................................................................
|
|
// callback function to execute a user command
|
|
void onCommand(std::uint8_t cmdId, std::uint32_t param1,
|
|
std::uint32_t param2, std::uint32_t param3)
|
|
{
|
|
Q_UNUSED_PAR(cmdId);
|
|
Q_UNUSED_PAR(param1);
|
|
Q_UNUSED_PAR(param2);
|
|
Q_UNUSED_PAR(param3);
|
|
}
|
|
|
|
} // namespace QS
|
|
#endif // Q_SPY
|
|
//----------------------------------------------------------------------------
|
|
|
|
} // namespace QP
|
|
|
|
//============================================================================
|
|
// NOTE1:
|
|
// The User LED is used to visualize the idle loop activity. The brightness
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
// execution time contributes to the brightness of the User LED.
|
|
|