qpcpp/source/qk.cpp
Quantum Leaps 85a4df4c2f 5.7.0
2016-09-01 11:58:57 -04:00

335 lines
13 KiB
C++

/// @file
/// @brief QK preemptive kernel core functions
/// @ingroup qk
/// @cond
///***************************************************************************
/// Product: QK/C++
/// Last updated for version 5.7.0
/// Last updated on 2016-08-21
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// http://www.state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#define QP_IMPL // this is QF/QK implementation
#include "qf_port.h" // QF port
#include "qk_pkg.h" // QK package-scope internal interface
#include "qassert.h" // QP assertions
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.h" // include QS port
#else
#include "qs_dummy.h" // disable the QS software tracing
#endif // Q_SPY
// protection against including this source file in a wrong project
#ifndef qk_h
#error "Source file included in a project NOT based on the QK kernel"
#endif // qk_h
// Public-scope objects ******************************************************
extern "C" {
Q_DEFINE_THIS_MODULE("qk")
QK_Attr QK_attr_; // global attributes of the QK kernel
} // extern "C"
namespace QP {
//****************************************************************************
/// @description
/// Initializes QF and must be called exactly once before any other QF
/// function. Typcially, QP::QF::init() is called from main() even before
/// initializing the Board Support Package (BSP).
///
/// @note
/// QP::QF::init() clears the internal QF variables, so that the framework
/// can start correctly even if the startup code fails to clear the
/// uninitialized data (as is required by the C Standard).
///
void QF::init(void) {
extern uint_fast8_t QF_maxPool_;
// clear the internal QF variables, so that the framework can start
// correctly even if the startup code fails to clear the uninitialized
// data (as is required by the C++ Standard).
QF_maxPool_ = static_cast<uint_fast8_t>(0);
bzero(&QF::timeEvtHead_[0],
static_cast<uint_fast16_t>(sizeof(QF::timeEvtHead_)));
bzero(&active_[0], static_cast<uint_fast16_t>(sizeof(active_)));
bzero(&QK_attr_, static_cast<uint_fast16_t>(sizeof(QK_attr_)));
QK_attr_.curr = static_cast<uint_fast8_t>(0); // prio of QK idle loop
QK_attr_.lockPrio = static_cast<uint_fast8_t>(QF_MAX_ACTIVE); // locked
QK_init(); // QK initialization ("C" linkage, might be in assembly)
}
//****************************************************************************
/// @description
/// This function stops the QF application. After calling this function,
/// QF attempts to gracefully stop the application. This graceful shutdown
/// might take some time to complete. The typical use of this function is
/// for terminating the QF application to return back to the operating
/// system or for handling fatal errors that require shutting down
/// (and possibly re-setting) the system.
///
/// @sa QP::QF::onCleanup()
///
void QF::stop(void) {
QF::onCleanup(); // cleanup callback
// nothing else to do for the QK preemptive kernel
}
//****************************************************************************
//! process all events posted during initialization */
static void initial_events(void); // prototype
static void initial_events(void) {
QK_attr_.lockPrio = static_cast<uint_fast8_t>(0); // scheduler unlocked
uint_fast8_t p = QK_schedPrio_();
// any active objects need to be scheduled before starting event loop?
if (p != static_cast<uint_fast8_t>(0)) {
QK_sched_(p); // process all events produced so far
}
}
//****************************************************************************
// @description
// QP::QF::run() is typically called from your startup code after you
// initialize the QF and start at least one active object with
// QP::QActive::start().
//
// @returns QP::QF::run() typically does not return in embedded applications.
// However, when QP runs on top of an operating system, QP::QF::run() might
// return and in this case the return represents the error code (0 for
// success). Typically the value returned from QP::QF::run() is subsequently
// passed on as return from main().
//
// @note This function is strongly platform-dependent and is not implemented
// in the QF, but either in the QF port or in the Board Support Package (BSP)
// for the given application. All QF ports must implement QP::QF::run().
//
int_t QF::run(void) {
QF_INT_DISABLE();
initial_events(); // process all events posted during initialization
onStartup(); // application-specific startup callback
QF_INT_ENABLE();
// the QK idle loop...
for (;;) {
QK::onIdle(); // invoke the QK on-idle callback
}
#ifdef __GNUC__ // GNU compiler?
return static_cast<int_t>(0);
#endif
}
//****************************************************************************
// @description
// Starts execution of the AO and registers the AO with the framework.
//
// @param[in] prio priority at which to start the active object
// @param[in] qSto pointer to the storage for the ring buffer of the
// event queue (used only with the built-in QP::QEQueue)
// @param[in] qLen length of the event queue (in events)
// @param[in] stkSto pointer to the stack storage (used only when
// per-AO stack is needed)
// @param[in] stkSize stack size (in bytes)
// @param[in] ie pointer to the optional initialization event
// (might be NULL).
//
void QMActive::start(uint_fast8_t const prio,
QEvt const *qSto[], uint_fast16_t const qLen,
void * const stkSto, uint_fast16_t const stkSize,
QEvt const * const ie)
{
Q_REQUIRE_ID(500, (static_cast<uint_fast8_t>(0) < prio)
&& (prio <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE)));
m_eQueue.init(qSto, qLen); // initialize QEQueue of this AO
m_prio = prio; // set the QF priority of this AO
QF::add_(this); // make QF aware of this AO
// QK kernel does not need per-thread stack
Q_ASSERT_ID(510, (stkSto == static_cast<void *>(0))
&& (stkSize == static_cast<uint_fast16_t>(0)));
this->init(ie); // take the top-most initial tran. (virtual)
QS_FLUSH(); // flush the trace buffer to the host
}
//****************************************************************************
// @description
// The preferred way of calling this function is from within the active
// object that needs to stop. In other words, an active object should stop
// itself rather than being stopped by someone else. This policy works
// best, because only the active object itself "knows" when it has reached
// the appropriate state for the shutdown.
//
// @note
// By the time the AO calls QP::QActive::stop(), it should have unsubscribed
// from all events and no more events should be directly-posted to it.
//
void QMActive::stop(void) {
QF::remove_(this); // remove this active object from the QF
}
} // namespace QP
//============================================================================
extern "C" {
//****************************************************************************
/// @description
/// This function finds out the priority of the highest-priority active object
/// that (1) has events to process, and (2) has priority that is above the
/// current priority, and (3) has priority that is above the mutex ceiling,
/// if mutex is configured in the port.
///
/// @returns the 1-based priority of the the active object, or zero if
/// no eligible active object is ready to run.
///
/// @attention QK_schedPrio_() must be always called with interrupts
/// __disabled__ and returns with interrupts __disabled__.
///
uint_fast8_t QK_schedPrio_(void) {
// find the highest-prio AO with non-empty event queue
uint_fast8_t p = QK_attr_.readySet.findMax();
// is the highest-prio below the current-prio?
if (p <= QK_attr_.curr) {
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else if (p <= QK_attr_.lockPrio) { // is it below the lock prio?
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else {
Q_ASSERT_ID(610, p <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE));
}
return p;
}
//****************************************************************************
/// @param[in] p priority of the next AO to schedule
///
/// @attention
/// QK_sched_() must be always called with interrupts **disabled** and
/// returns with interrupts **disabled**.
///
/// @note
/// The scheduler might enable interrupts internally, but always
/// returns with interrupts **disabled**.
///
void QK_sched_(uint_fast8_t p) {
uint_fast8_t pin = QK_attr_.curr; // save the initial priority
QP::QMActive *a;
// QS tracing or thread-local storage?
#ifdef Q_SPY
uint_fast8_t pprev = pin;
#endif // Q_SPY
// loop until have ready-to-run AOs of higher priority than the initial
do {
a = QP::QF::active_[p]; // obtain the pointer to the AO
QK_attr_.curr = p; // this becomes the current task priority
QS_BEGIN_NOCRIT_(QP::QS_SCHED_NEXT, QP::QS::priv_.aoObjFilter, a)
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(p), // prio of the scheduled AO
static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
#ifdef Q_SPY
if (p != pprev) { // changing priorities?
pprev = p; // update previous priority
}
#endif // Q_SPY
QF_INT_ENABLE(); // unconditionally enable interrupts
// perform the run-to-completion (RTS) step...
// 1. retrieve the event from the AO's event queue, which by this
// time must be non-empty and QActive_get_() asserts it.
// 2. dispatch the event to the AO's state machine.
// 3. determine if event is garbage and collect it if so
//
QP::QEvt const *e = a->get_();
a->dispatch(e);
QP::QF::gc(e);
// determine the next highest-priority AO ready to run...
QF_INT_DISABLE();
// find new highest-prio AO ready to run...
p = QK_attr_.readySet.findMax();
// is the new priority below the initial preemption threshold?
if (p <= pin) {
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else if (p <= QK_attr_.lockPrio) { // is it below the lock prio?
p = static_cast<uint_fast8_t>(0); // active object not eligible
}
else {
Q_ASSERT_ID(710, p <= static_cast<uint_fast8_t>(QF_MAX_ACTIVE));
}
} while (p != static_cast<uint_fast8_t>(0));
QK_attr_.curr = pin; // restore the initial priority
#ifdef Q_SPY
if (pin != static_cast<uint_fast8_t>(0)) { // resuming an active object?
a = QP::QF::active_[pin]; // the pointer to the preempted AO
QS_BEGIN_NOCRIT_(QP::QS_SCHED_RESUME, QP::QS::priv_.aoObjFilter, a)
QS_TIME_(); // timestamp
QS_2U8_(static_cast<uint8_t>(pin), // prio of the resumed AO
static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
}
else { // resuming priority==0 --> idle
QS_BEGIN_NOCRIT_(QP::QS_SCHED_IDLE,
static_cast<void *>(0), static_cast<void *>(0))
QS_TIME_(); // timestamp
QS_U8_(static_cast<uint8_t>(pprev)); // previous priority
QS_END_NOCRIT_()
}
#endif // Q_SPY
}
} // extern "C"