qpcpp/ports/threadx/qf_port.cpp
MMS 518a85e939 6.9.3
official release
2021-04-11 13:25:35 -04:00

317 lines
11 KiB
C++

/// @file
/// @brief QF/C++ port to ThreadX, all supported compilers
/// @cond
///**************************************************************************
/// Last updated for version 6.9.3
/// Last updated on 2021-04-08
///
/// Q u a n t u m L e a P s
/// ------------------------
/// Modern Embedded Software
///
/// Copyright (C) 2005-2021 Quantum Leaps. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <www.gnu.org/licenses>.
///
/// Contact information:
/// <www.state-machine.com/licensing>
/// <info@state-machine.com>
///**************************************************************************
/// @endcond
#define QP_IMPL // this is QP implementation
#include "qf_port.hpp" // QF port
#include "qf_pkg.hpp"
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.hpp" // QS port
#include "qs_pkg.hpp" // QS package-scope internal interface
#else
#include "qs_dummy.hpp" // disable the QS software tracing
#endif // Q_SPY
#include "qassert.h"
// namespace QP ==============================================================
namespace QP {
Q_DEFINE_THIS_MODULE("qf_port")
// Local objects -------------------------------------------------------------
static void thread_function(ULONG thread_input); // prototype
//............................................................................
void QF::init(void) {
}
//............................................................................
int_t QF::run(void) {
onStartup(); // the startup callback
// produce the QS_QF_RUN trace record
QS_CRIT_STAT_
QS_BEGIN_PRE_(QS_QF_RUN, 0U)
QS_END_PRE_()
return 0; // return success
}
//............................................................................
void QF::stop(void) {
onCleanup(); // the cleanup callback
}
//............................................................................
void QF::thread_(QActive *act) {
// event loop of the active object thread
for (;;) { // for-ever
QEvt const *e = act->get_(); // wait for event
act->dispatch(e, act->m_prio); // dispatch to the AO's state machine
gc(e); // check if the event is garbage, and collect it if so
}
}
//............................................................................
static void thread_function(ULONG thread_input) { // ThreadX signature
// run the active-object thread
QF::thread_(reinterpret_cast<QActive *>(thread_input));
}
//............................................................................
void QActive::start(std::uint_fast8_t const prio,
QEvt const * * const qSto, std::uint_fast16_t const qLen,
void * const stkSto, std::uint_fast16_t const stkSize,
void const * const par)
{
// allege that the ThreadX queue is created successfully
Q_ALLEGE_ID(210,
tx_queue_create(&m_eQueue,
m_thread.tx_thread_name, // the same name as thread
TX_1_ULONG,
static_cast<VOID *>(qSto),
static_cast<ULONG>(qLen * sizeof(ULONG)))
== TX_SUCCESS);
m_prio = prio; // save the QF priority
QF::add_(this); // make QF aware of this active object
init(par, m_prio); // execute initial transition
QS_FLUSH(); // flush the trace buffer to the host
// convert QF priority to the ThreadX priority
UINT tx_prio = QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE - prio;
Q_ALLEGE_ID(220,
tx_thread_create(
&m_thread, // ThreadX thread control block
m_thread.tx_thread_name, // unique thread name
&thread_function, // thread function
reinterpret_cast<ULONG>(this), // thread parameter
stkSto, // stack start
stkSize, // stack size in bytes
tx_prio, // ThreadX priority
tx_prio, // preemption threshold disabled (same as priority)
TX_NO_TIME_SLICE,
TX_AUTO_START)
== TX_SUCCESS);
}
//............................................................................
void QActive::setAttr(std::uint32_t attr1, void const *attr2) {
// this function must be called before QACTIVE_START(),
// which implies that me->thread.tx_thread_name must not be used yet;
Q_REQUIRE_ID(300, m_thread.tx_thread_name == nullptr);
switch (attr1) {
case THREAD_NAME_ATTR:
// temporarily store the name, cast 'const' away
m_thread.tx_thread_name = static_cast<char_t *>(
const_cast<void *>(attr2));
break;
// ...
}
}
//............................................................................
#ifndef Q_SPY
bool QActive::post_(QEvt const * const e,
std::uint_fast16_t const margin) noexcept
#else
bool QActive::post_(QEvt const * const e, std::uint_fast16_t const margin,
void const * const sender) noexcept
#endif
{
bool status;
QF_CRIT_STAT_
QF_CRIT_E_();
std::uint_fast16_t nFree =
static_cast<std::uint_fast16_t>(m_eQueue.tx_queue_available_storage);
if (margin == QF_NO_MARGIN) {
if (nFree > 0U) {
status = true; // can post
}
else {
status = false; // cannot post
Q_ERROR_ID(510); // must be able to post the event
}
}
else if (nFree > static_cast<QEQueueCtr>(margin)) {
status = true; // can post
}
else {
status = false; // cannot post
}
if (status) { // can post the event?
QS_BEGIN_NOCRIT_PRE_(QS_QF_ACTIVE_POST, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->poolId_, e->refCtr_); // pool Id & refCtr of evt
QS_EQC_PRE_(nFree); // # free entries
QS_EQC_PRE_(0U); // min # free (unknown)
QS_END_NOCRIT_PRE_()
// is it a pool event?
if (e->poolId_ != 0U) {
QF_EVT_REF_CTR_INC_(e); // increment the reference counter
}
QF_CRIT_X_();
QEvt const *ep = const_cast<QEvt const *>(e);
Q_ALLEGE_ID(520,
tx_queue_send(&m_eQueue, static_cast<VOID *>(&ep), TX_NO_WAIT)
== TX_SUCCESS);
}
else {
QS_BEGIN_NOCRIT_PRE_(QS_QF_ACTIVE_POST_ATTEMPT, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->poolId_, e->refCtr_); // pool Id & refCtr of evt
QS_EQC_PRE_(nFree); // # free entries
QS_EQC_PRE_(0U); // min # free (unknown)
QS_END_NOCRIT_PRE_()
QF_CRIT_X_();
}
return status;
}
//............................................................................
void QActive::postLIFO(QEvt const * const e) noexcept {
QF_CRIT_STAT_
QF_CRIT_E_();
QS_BEGIN_NOCRIT_PRE_(QS_QF_ACTIVE_POST_LIFO, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->poolId_, e->refCtr_); // pool Id & refCtr of the evt
// # free entries available
QS_EQC_PRE_(m_eQueue.tx_queue_available_storage);
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_NOCRIT_PRE_()
// is it a pool event?
if (e->poolId_ != 0U) {
QF_EVT_REF_CTR_INC_(e); // increment the reference counter
}
QF_CRIT_X_();
// LIFO posting must succeed, see NOTE1
QEvt const *ep = const_cast<QEvt const *>(e);
Q_ALLEGE_ID(610,
tx_queue_front_send(&m_eQueue, static_cast<VOID *>(&ep), TX_NO_WAIT)
== TX_SUCCESS);
}
//............................................................................
QEvt const *QActive::get_(void) noexcept {
QEvt const *e;
QS_CRIT_STAT_
Q_ALLEGE_ID(710,
tx_queue_receive(&m_eQueue, (VOID *)&e, TX_WAIT_FOREVER)
== TX_SUCCESS);
QS_BEGIN_PRE_(QS_QF_ACTIVE_GET, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->poolId_, e->refCtr_); // pool Id & refCtr of the evt
// min # free entries
QS_EQC_PRE_(m_eQueue.tx_queue_available_storage);
QS_END_PRE_()
return e;
}
//............................................................................
void QFSchedLock::lock(std::uint_fast8_t prio) {
m_lockHolder = tx_thread_identify();
/// @pre must be thread level, so current TX thread must be available
Q_REQUIRE_ID(800, m_lockHolder != nullptr);
UINT tx_err = tx_thread_preemption_change(m_lockHolder,
(QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE - prio),
&m_prevThre);
if (tx_err == TX_SUCCESS) {
QS_CRIT_STAT_
m_lockPrio = prio;
QS_BEGIN_PRE_(QS_SCHED_LOCK, 0U)
QS_TIME_PRE_(); // timestamp
QS_2U8_PRE_(QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE - m_prevThre,
prio); // new lock prio
QS_END_PRE_()
}
else if (tx_err == TX_THRESH_ERROR) {
// threshold was greater than (lower prio) than the current prio
m_lockPrio = 0U; // threshold not changed
}
else {
/* no other errors are tolerated */
Q_ERROR_ID(810);
}
}
//............................................................................
void QFSchedLock::unlock(void) const {
QS_CRIT_STAT_
/// @pre the lock holder TX thread must be available
Q_REQUIRE_ID(900, (m_lockHolder != nullptr)
&& (m_lockPrio != 0U));
QS_BEGIN_PRE_(QS_SCHED_UNLOCK, 0U)
QS_TIME_PRE_(); // timestamp
QS_2U8_PRE_(m_lockPrio,/* prev lock prio */
QF_TX_PRIO_OFFSET + QF_MAX_ACTIVE - m_prevThre);
QS_END_PRE_()
// restore the preemption threshold of the lock holder
UINT old_thre;
Q_ALLEGE_ID(910, tx_thread_preemption_change(m_lockHolder,
m_prevThre,
&old_thre) == TX_SUCCESS);
}
} // namespace QP