Quantum Leaps 89834cf23b 5.9.0
2017-05-17 13:15:09 -04:00

209 lines
7.6 KiB
C++

/// @file
/// @brief QUTEST port for the EFM32-SLSTK3401A board
/// @ingroup qs
/// @cond
///***************************************************************************
/// Last updated for version 5.9.0
/// Last updated on 2017-05-17
///
/// Q u a n t u m L e a P s
/// ---------------------------
/// innovating embedded systems
///
/// Copyright (C) 2005-2017 Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// https://state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#include "qpcpp.h"
#include "em_device.h" // the device specific header (SiLabs)
#include "em_cmu.h" // Clock Management Unit (SiLabs)
#include "em_gpio.h" // GPIO (SiLabs)
#include "em_usart.h" // USART (SiLabs)
// add other drivers if necessary...
//Q_DEFINE_THIS_MODULE("qutest_port")
using namespace QP;
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
USART0_RX_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
//Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
// ISRs defined in this BSP --------------------------------------------------
extern "C" void USART0_RX_IRQHandler(void);
// Local-scope objects -------------------------------------------------------
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
#define LED_PORT gpioPortF
#define LED0_PIN 4
#define LED1_PIN 5
#define PB_PORT gpioPortF
#define PB0_PIN 6
#define PB1_PIN 7
//............................................................................
extern "C" {
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
// QK_ISR_EXIT and they cannot post or publish events.
//
void USART0_RX_IRQHandler(void) {
// while RX FIFO NOT empty
while ((l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
uint32_t b = l_USART0->RXDATA;
QP::QS::rxPut(b);
}
}
} // extern "C"
// QS callbacks ==============================================================
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
static USART_InitAsync_TypeDef init = {
usartEnable, // Enable RX/TX when init completed
0, // Use current clock for configuring baudrate
115200, // 115200 bits/s
usartOVS16, // 16x oversampling
usartDatabits8, // 8 databits
usartNoParity, // No parity
usartStopbits1, // 1 stopbit
0, // Do not disable majority vote
0, // Not USART PRS input mode
usartPrsRxCh0, // PRS channel 0
0, // Auto CS functionality enable/disable switch
0, // Auto CS Hold cycles
0 // Auto CS Setup cycles
};
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// Enable peripheral clocks
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
// To avoid false start, configure output as high
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
// Enable DK RS232/UART switch
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
CMU_ClockEnable(cmuClock_USART0, true);
// configure the UART for the desired baud rate, 8-N-1 operation
init.enable = usartDisable;
USART_InitAsync(l_USART0, &init);
// enable pins at correct UART/USART location.
l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
l_USART0->ROUTELOC0 = (l_USART0->ROUTELOC0 &
~(_USART_ROUTELOC0_TXLOC_MASK
| _USART_ROUTELOC0_RXLOC_MASK));
// Clear previous RX interrupts
USART_IntClear(l_USART0, USART_IF_RXDATAV);
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
// Enable RX interrupts
USART_IntEnable(l_USART0, USART_IF_RXDATAV);
// NOTE: do not enable the UART0 interrupt in the NVIC yet.
// Wait till QF::onStartup()
// Finally enable the UART
USART_Enable(l_USART0, usartEnable);
// Clear previous RX interrupts
USART_IntClear(l_USART0, USART_IF_RXDATAV);
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
// Enable RX interrupts
USART_IntEnable(l_USART0, USART_IF_RXDATAV);
// enable the UART RX interrupt...
NVIC_SetPriorityGrouping(0U);
NVIC_SetPriority(USART0_RX_IRQn, USART0_RX_PRIO);
NVIC_EnableIRQ(USART0_RX_IRQn); // UART0 interrupt used for QS-RX
return true; // success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
GPIO->P[LED_PORT].DOUT |= (1U << LED0_PIN);
// while TXE not empty
while ((l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
}
l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
GPIO->P[LED_PORT].DOUT &= ~(1U << LED0_PIN);
}
}
//............................................................................
// callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
void QS::onTestLoop() {
rxPriv_.inTestLoop = true;
while (rxPriv_.inTestLoop) {
// turn the LED1 on and off (glow)
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
rxParse(); // parse all the received bytes
if ((l_USART0->STATUS & USART_STATUS_TXBL) != 0) { // is TXE empty?
uint16_t b = getByte();
if (b != QS_EOD) { // not End-Of-Data?
l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
}
}
}
// set inTestLoop to true in case calls to QS_onTestLoop() nest,
// which can happen through the calls to QS_TEST_WAIT().
rxPriv_.inTestLoop = true;
}