mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-28 06:02:56 +08:00
354 lines
13 KiB
C++
354 lines
13 KiB
C++
//============================================================================
|
|
// Product: BSP for DPP with lwIP on EK-LM3S9665 board, QV kernel
|
|
// Last updated for version 6.9.3
|
|
// Last updated on 2021-03-03
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ------------------------
|
|
// Modern Embedded Software
|
|
//
|
|
// Copyright (C) 2005-2021 Quantum Leaps. All rights reserved.
|
|
//
|
|
// This program is open source software: you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Alternatively, this program may be distributed and modified under the
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
// the GNU General Public License and are specifically designed for
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <www.gnu.org/licenses>.
|
|
//
|
|
// Contact information:
|
|
// <www.state-machine.com/licensing>
|
|
// <info@state-machine.com>
|
|
//============================================================================
|
|
#include "qpcpp.hpp" // QP port header file
|
|
#include "dpp.hpp" // application events and active objects
|
|
#include "bsp.hpp" // Board Support Package header file
|
|
|
|
#include "LM3S6965.h" // the device specific header (TI)
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
// ISRs defined in this BSP --------------------------------------------------
|
|
extern "C" void SysTick_Handler(void);
|
|
|
|
// Local-scope objects -------------------------------------------------------
|
|
#define USER_LED (1U << 0)
|
|
#define USER_BTN (1U << 1)
|
|
|
|
#define ETH0_LED (1U << 3)
|
|
#define ETH1_LED (1U << 2)
|
|
|
|
static uint32_t l_nTicks;
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
|
|
|
|
// QS source IDs
|
|
static QP::QSpyId const l_SysTick_Handler = { 0U };
|
|
|
|
#define UART_BAUD_RATE 115200U
|
|
#define UART_TXFIFO_DEPTH 16U
|
|
#define UART_FR_TXFE (1U << 7)
|
|
|
|
#endif
|
|
|
|
//............................................................................
|
|
extern "C" void SysTick_Handler(void) {
|
|
uint32_t volatile tmp;
|
|
|
|
++l_nTicks; // count the number of clock ticks
|
|
|
|
#ifdef Q_SPY
|
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
|
#endif
|
|
|
|
QTimeEvt::TICK_X(0U, &l_SysTick_Handler); // process time events at rate 0
|
|
|
|
|
|
// Perform the debouncing of buttons. The algorithm for debouncing
|
|
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
|
|
// and Michael Barr, page 71.
|
|
//
|
|
static struct ButtonsDebouncing {
|
|
uint32_t depressed;
|
|
uint32_t previous;
|
|
} buttons = { 0U, 0U }; // state of the button debouncing
|
|
uint32_t current;
|
|
|
|
current = ~GPIOF->DATA_Bits[USER_BTN]; // read USER_BTN
|
|
tmp = buttons.depressed; // save the debounced depressed buttons
|
|
buttons.depressed |= (buttons.previous & current); // set depressed
|
|
buttons.depressed &= (buttons.previous | current); // clear released
|
|
buttons.previous = current; // update the history
|
|
tmp ^= buttons.depressed; // changed debounced depressed
|
|
if ((tmp & USER_BTN) != 0U) { // debounced USER_BTN state changed?
|
|
if ((buttons.depressed & USER_BTN) != 0U) { // is USER_BTN depressed?
|
|
static QEvt const bd = { BTN_DOWN_SIG, 0U, 0U };
|
|
QF::PUBLISH(&bd, &l_SysTick_Handler);
|
|
}
|
|
else { // the button is released
|
|
static QEvt const bu = { BTN_UP_SIG, 0U, 0U };
|
|
QF::PUBLISH(&bu, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
}
|
|
|
|
//............................................................................
|
|
void BSP_init(void) {
|
|
// NOTE: SystemInit() already called from startup_TM4C123GH6PM.s
|
|
// but SystemCoreClock needs to be updated
|
|
//
|
|
SystemCoreClockUpdate();
|
|
|
|
SYSCTL->RCGC2 |= (1 << 5); // enable clock to GPIOF (User and Eth LEDs)
|
|
__NOP();
|
|
__NOP();
|
|
|
|
// configure the pin driving the Ethernet LED
|
|
GPIOF->DIR &= ~(ETH0_LED | ETH1_LED); // set direction: hardware
|
|
GPIOF->AFSEL |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->DR2R |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->ODR &= ~(ETH0_LED | ETH1_LED);
|
|
GPIOF->PUR |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->PDR &= ~(ETH0_LED | ETH1_LED);
|
|
GPIOF->DEN |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->AMSEL &= ~(ETH0_LED | ETH1_LED);
|
|
|
|
// configure the pin driving the User LED
|
|
GPIOF->DIR |= USER_LED; // set direction: output
|
|
GPIOF->DR2R |= USER_LED;
|
|
GPIOF->DEN |= USER_LED;
|
|
GPIOF->AMSEL &= ~USER_LED;
|
|
GPIOF->DATA_Bits[USER_LED] = 0; // turn the LED off
|
|
|
|
// configure the pin connected to the Buttons
|
|
GPIOF->DIR &= ~USER_BTN; // set direction: input
|
|
GPIOF->DR2R |= USER_BTN;
|
|
GPIOF->ODR &= ~USER_BTN;
|
|
GPIOF->PUR |= USER_BTN;
|
|
GPIOF->PDR &= ~USER_BTN;
|
|
GPIOF->DEN |= USER_BTN;
|
|
GPIOF->AMSEL &= ~USER_BTN;
|
|
|
|
// NOTE:
|
|
// The OLED display is encapsulated inside the Table AO, so the
|
|
// initialization of the OLED display happens in the top-most initial
|
|
// transition of the Table AO (see Table_displayInit()).
|
|
//
|
|
|
|
if (!QS_INIT(nullptr)) { // initialize the QS software tracing
|
|
Q_ERROR();
|
|
}
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
|
|
// setup the QS filters...
|
|
QS_GLB_FILTER(QP::QS_SM_RECORDS); // state machine records
|
|
QS_GLB_FILTER(QP::QS_AO_RECORDS); // active object records
|
|
QS_GLB_FILTER(QP::QS_UA_RECORDS); // all user records
|
|
}
|
|
//............................................................................
|
|
void QF::onStartup(void) {
|
|
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
|
|
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
|
|
|
|
// assing all priority bits for preemption-prio. and none to sub-prio.
|
|
NVIC_SetPriorityGrouping(0U);
|
|
|
|
// set priorities of ALL ISRs used in the system, see NOTE1
|
|
//
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority()
|
|
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
|
|
//
|
|
NVIC_SetPriority(Ethernet_IRQn, QF_AWARE_ISR_CMSIS_PRI);
|
|
NVIC_SetPriority(SysTick_IRQn, QF_AWARE_ISR_CMSIS_PRI + 1U);
|
|
// ...
|
|
|
|
NVIC_EnableIRQ(Ethernet_IRQn); // enable the Ethernet Interrupt
|
|
// ...
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
void QV::onIdle(void) { // NOTE: called with interrutps DISABLED, see NOTE01
|
|
|
|
// toggle the User LED on and then off, see NOTE02
|
|
GPIOF->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on
|
|
GPIOF->DATA_Bits[USER_LED] = 0U; // turn the User LED off
|
|
|
|
#ifdef Q_SPY
|
|
QF_INT_ENABLE();
|
|
if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done?
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
|
|
uint8_t const *block;
|
|
|
|
QF_INT_DISABLE();
|
|
block = QS::getBlock(&fifo); // try to get next block to transmit
|
|
QF_INT_ENABLE();
|
|
|
|
while (fifo-- != 0U) { // any bytes in the block?
|
|
UART0->DR = *block++; // put into the FIFO
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
// you might need to customize the clock management for your application,
|
|
// see the datasheet for your particular MCU.
|
|
//
|
|
QV_CPU_SLEEP(); // atomically go to sleep and enable interrupts
|
|
#else
|
|
QF_INT_ENABLE(); // just enable interrupts
|
|
#endif
|
|
}
|
|
|
|
//............................................................................
|
|
extern "C" Q_NORETURN Q_onAssert(char const * const module, int_t const loc) {
|
|
//
|
|
// NOTE: add here your application-specific error handling
|
|
//
|
|
(void)module;
|
|
(void)loc;
|
|
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
//............................................................................
|
|
// sys_now() is used in the lwIP stack
|
|
extern "C" uint32_t sys_now(void) {
|
|
return l_nTicks * (1000U / BSP_TICKS_PER_SEC);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
#ifdef Q_SPY
|
|
//............................................................................
|
|
bool QS::onStartup(void const *arg) {
|
|
static uint8_t qsBuf[2*1024]; // buffer for Quantum Spy
|
|
uint32_t tmp;
|
|
initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
// enable the peripherals used by the UART0...
|
|
SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0
|
|
SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA
|
|
__NOP(); // wait after enabling clocks
|
|
__NOP();
|
|
__NOP();
|
|
|
|
// configure UART0 pins for UART operation...
|
|
tmp = (1U << 0) | (1U << 1);
|
|
GPIOA->DIR &= ~tmp;
|
|
GPIOA->AFSEL |= tmp;
|
|
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
|
|
GPIOA->SLR &= ~tmp;
|
|
GPIOA->ODR &= ~tmp;
|
|
GPIOA->PUR &= ~tmp;
|
|
GPIOA->PDR &= ~tmp;
|
|
GPIOA->DEN |= tmp;
|
|
GPIOA->AMSEL &= ~tmp;
|
|
|
|
// configure the UART for the desired baud rate, 8-N-1 operation...
|
|
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
|
|
UART0->IBRD = tmp / 64U;
|
|
UART0->FBRD = tmp % 64U;
|
|
UART0->LCRH = 0x60U; // configure 8-bit operation
|
|
UART0->LCRH |= 0x10U; // enable FIFOs
|
|
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
|
|
|
|
QS_tickPeriod_ = SystemCoreClock / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // flag not set?
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
|
|
uint8_t const *block;
|
|
while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) {
|
|
// busy-wait until TX FIFO empty
|
|
while ((UART0->FR & UART_FR_TXFE) == 0) {
|
|
}
|
|
|
|
while (fifo-- != 0U) { // any bytes in the block?
|
|
UART0->DR = *block++; // put into the TX FIFO
|
|
}
|
|
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
|
|
}
|
|
}
|
|
//............................................................................
|
|
//! callback function to reset the target (to be implemented in the BSP)
|
|
void QS::onReset(void) {
|
|
//TBD
|
|
}
|
|
//............................................................................
|
|
//! callback function to execute a uesr command (to be implemented in BSP)
|
|
void QS::onCommand(uint8_t cmdId, uint32_t param1,
|
|
uint32_t param2, uint32_t param3)
|
|
{
|
|
(void)cmdId;
|
|
(void)param1;
|
|
(void)param2;
|
|
(void)param3;
|
|
//TBD
|
|
}
|
|
#endif // Q_SPY
|
|
//----------------------------------------------------------------------------
|
|
|
|
//============================================================================
|
|
// NOTE1:
|
|
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
|
|
// ISR priority that is disabled by the QF framework. The value is suitable
|
|
// for the NVIC_SetPriority() CMSIS function.
|
|
//
|
|
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
|
|
// with the numerical values of priorities equal or higher than
|
|
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
|
|
// macros or any other QF/QK services. These ISRs are "QF-aware".
|
|
//
|
|
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
|
|
// level (i.e., with the numerical values of priorities less than
|
|
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
|
|
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
|
|
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
|
|
// by which a "QF-unaware" ISR can communicate with the QF framework is by
|
|
// triggering a "QF-aware" ISR, which can post/publish events.
|
|
//
|
|
// NOTE01:
|
|
// The QV_onIdle() callback is called with interrupts disabled, because the
|
|
// determination of the idle condition might change by any interrupt posting
|
|
// an event. QV_onIdle() must internally enable interrupts, ideally
|
|
// atomically with putting the CPU to the power-saving mode.
|
|
//
|
|
// NOTE2:
|
|
// The User LED is used to visualize the idle loop activity. The brightness
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
// execution time contributes to the brightness of the User LED.
|
|
//
|