Quantum Leaps dd37652551 5.5.0
2015-09-29 11:34:38 -04:00

185 lines
6.7 KiB
C++

///***************************************************************************
// Product: Blinky example, EK-TM4C123GXL board, CMSIS-RTOS RTX kernel
// Last updated for version 5.5.0
// Last updated on 2015-09-23
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// http://www.state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "blinky.h"
#include "bsp.h"
#include "TM4C123GH6PM.h" // the device specific header (TI)
#include "rom.h" // the built-in ROM functions (TI)
#include "sysctl.h" // system control driver (TI)
#include "gpio.h" // GPIO driver (TI)
// add other drivers if necessary...
Q_DEFINE_THIS_FILE
#ifdef Q_SPY
#error Simple Blinky Application does not provide Spy build configuration
#endif
// Local-scope objects -------------------------------------------------------
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
extern "C" {
// ISRs used in this project =================================================
void GPIOPortA_IRQHandler(void); // prototype
void GPIOPortA_IRQHandler(void) {
AO_Blinky->POST(Q_NEW(QEvt, DUMMY_SIG), // for testing...
(void *)0);
// NOTE:
// There is no need to explicitly pend the PendSV exception, because
// RTX handles this when signaling the task. (See OS_PEND_IRQ() macro
// in RTX source code).
//
}
// RTX callbacks =============================================================
void os_idle_demon(void); // prototype
void os_idle_demon(void) {
// The RTX idle demon is a system thread, running when no other thread
// is ready to run.
for (;;) { // idle-loop
QF_INT_DISABLE();
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn LED on
GPIOF->DATA_Bits[LED_BLUE] = 0x00U; // turn LED off
QF_INT_ENABLE();
#ifdef NDEBUG
// Put the CPU and peripherals to the low-power mode.
// You might need to customize the clock management for your
// application, see the datasheet for your particular MCU.
//
__WFI(); // Wait-For-Interrupt
#endif
} // idle-loop
}
//............................................................................
// This function is called when RTX detects a runtime error.
// Parameter 'error_code' holds the runtime error code.
//
void os_error(uint32_t err_code); // prototype
void os_error(uint32_t error_code) {
// perform customized error handling...
GPIOF->DATA_Bits[LED_RED] = 0xFFU; // turn LED on
Q_ERROR_ID(error_code); // NOTE: does not return
}
} // extern "C"
// BSP functions =============================================================
void BSP_init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// enable clock for to the peripherals used by this application...
SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF
// configure the LEDs and push buttons
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off
GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off
GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off
// configure the Buttons
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
}
//............................................................................
void BSP_ledOff(void) {
GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off
}
//............................................................................
void BSP_ledOn(void) {
// exercise the FPU with some floating point computations...
float volatile x;
x = 3.1415926F;
x = x + 2.7182818F;
GPIOF->DATA_Bits[LED_GREEN] = 0xFFU; // turn the LED on
}
//............................................................................
void BSP_terminate(int16_t result) {
(void)result;
}
// QF callbacks ==============================================================
void QF::onStartup(void) {
// configure the QF ticker thread
QF_setRtxTicker(1000U/BSP_TICKS_PER_SEC, osPriorityAboveNormal );
// set priorities of ISRs used in the system...
NVIC_SetPriority(GPIOA_IRQn, 1U);
// ...
// enable IRQs in the NVIC...
NVIC_EnableIRQ(GPIOA_IRQn);
// ...
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QP::QF_onRtxTicker() {
QF::TICK_X(0U, (void *)0); // process all QF time events at tick rate 0
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
NVIC_SystemReset();
}
//****************************************************************************
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//