Quantum Leaps 9d72aa81de 5.2.0
2013-12-30 17:41:15 -05:00

441 lines
18 KiB
C++

//****************************************************************************
// Product: "Dining Philosophers Problem" example, preemptive QK kernel
// Last Updated for Version: 5.2.0
// Date of the Last Update: Dec 28, 2013
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) 2002-2013 Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// Quantum Leaps Web sites: http://www.quantum-leaps.com
// http://www.state-machine.com
// e-mail: info@quantum-leaps.com
//****************************************************************************
#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
extern "C" {
#include "tm4c_cmsis.h"
#include "sysctl.h"
#include "gpio.h"
#include "rom.h"
}
//****************************************************************************
namespace DPP {
Q_DEFINE_THIS_FILE
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
GPIOPORTA_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
SYSTICK_PRIO,
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// ISRs defined in this BSP --------------------------------------------------
extern "C" void SysTick_Handler(void);
extern "C" void GPIOPortA_IRQHandler(void);
// Local-scope objects -------------------------------------------------------
static uint32_t l_rnd; // random seed
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
#define USR_SW1 (1U << 4)
#define USR_SW2 (1U << 0)
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
static uint8_t l_GPIOPortA_IRQHandler;
uint32_t const UART_BAUD_RATE = static_cast<uint32_t>(115200U);
uint32_t const UART_FR_TXFE = static_cast<uint32_t>(0x80U);
uint16_t const UART_TXFIFO_DEPTH = static_cast<uint16_t>(16U);
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER
};
#endif
//............................................................................
extern "C" void SysTick_Handler(void) {
QK_ISR_ENTRY(); // infrom QK about entering an ISR
#ifdef Q_SPY
{
uint32_t dummy = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events at rate 0
static uint32_t btn_debounced = USR_SW1;
static uint8_t debounce_state = 0U;
uint32_t btn = GPIOF->DATA_Bits[USR_SW1]; // read the user sw1
switch (debounce_state) {
case 0:
if (btn != btn_debounced) {
debounce_state = 1U; // transition to the next state
}
break;
case 1:
if (btn != btn_debounced) {
debounce_state = 2U; // transition to the next state
}
else {
debounce_state = 0U; // transition back to state 0
}
break;
case 2:
if (btn != btn_debounced) {
debounce_state = 3U; // transition to the next state
}
else {
debounce_state = 0U; // transition back to state 0
}
break;
case 3:
if (btn != btn_debounced) {
btn_debounced = btn; // save the debounced button value
if (btn == 0U) { // is the button depressed?
static QP::QEvt const pauseEvt =
QEVT_INITIALIZER(PAUSE_SIG);
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
else {
static QP::QEvt const pauseEvt =
QEVT_INITIALIZER(PAUSE_SIG);
QP::QF::PUBLISH(&pauseEvt, &l_SysTick_Handler);
}
}
debounce_state = 0U; // transition back to state 0
break;
default:
Q_ERROR();
break;
}
QK_ISR_EXIT(); // inform QK about exiting an ISR
}
//............................................................................
extern "C" void GPIOPortA_IRQHandler(void) {
QK_ISR_ENTRY(); // infrom QK about entering an ISR
DPP::AO_Table->POST(Q_NEW(QP::QEvt, DPP::MAX_PUB_SIG), // for testing
&l_GPIOPortA_IRQHandler);
QK_ISR_EXIT(); // infrom QK about exiting an ISR
}
//............................................................................
void BSP_init(void) {
// Enable the floating-point unit
SCB->CPACR |= (0xFU << 20);
// Enable lazy stacking for interrupt handlers. This allows FPU
// instructions to be used within interrupt handlers, but at the
// expense of extra stack and CPU usage.
//
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
// Set the clocking to run directly from the crystal
ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC
| SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
// enable clock to the peripherals used by the application
SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// configure the LEDs and push buttons
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set direction: output
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
GPIOF->DATA_Bits[LED_RED] = 0; // turn the LED off
GPIOF->DATA_Bits[LED_GREEN] = 0; // turn the LED off
GPIOF->DATA_Bits[LED_BLUE] = 0; // turn the LED off
// configure the User Switches
GPIOF->DIR &= ~(USR_SW1 | USR_SW2); // set direction: input
ROM_GPIOPadConfigSet(GPIO_PORTF_BASE, (USR_SW1 | USR_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
BSP_randomSeed(1234U);
Q_ALLEGE(QS_INIT(static_cast<void *>(0)));
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
}
//............................................................................
void BSP_displayPhilStat(uint8_t const n, char_t const * const stat) {
GPIOF->DATA_Bits[LED_BLUE] = ((stat[0] == 'e') ? LED_BLUE : 0U);
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1U, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP_displayPaused(uint8_t const paused) {
GPIOF->DATA_Bits[LED_RED] = ((paused != 0U) ? LED_RED : 0U);
}
//............................................................................
uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator
// code for testing the hardware FPU...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
//............................................................................
void BSP_randomSeed(uint32_t const seed) {
l_rnd = seed;
}
//............................................................................
void BSP_terminate(int16_t const result) {
(void)result;
}
} // namespace DPP
//............................................................................
extern "C" void Q_onAssert(char const Q_ROM * const file, int_t line) {
assert_failed(file, line);
}
//............................................................................
// error routine that is called if the CMSIS library encounters an error
extern "C" void assert_failed(char const *file, int line) {
(void)file; // avoid compiler warning
(void)line; // avoid compiler warning
QF_INT_DISABLE(); // make sure that all interrupts are disabled
ROM_SysCtlReset(); // reset the system
}
//****************************************************************************
namespace QP {
//............................................................................
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
(void)SysTick_Config(ROM_SysCtlClockGet() / DPP::BSP_TICKS_PER_SEC);
// assing all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
NVIC_SetPriority(GPIOPortA_IRQn, DPP::GPIOPORTA_PRIO);
// enable IRQs...
NVIC_EnableIRQ(GPIOPortA_IRQn);
NVIC_EnableIRQ(GPIOPortA_IRQn);
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QK::onIdle(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
GPIOF->DATA_Bits[LED_GREEN] = LED_GREEN; // turn the Green LED on
GPIOF->DATA_Bits[LED_GREEN] = 0; // turn the Green LED off
QF_INT_ENABLE();
#ifdef Q_SPY
if ((UART0->FR & DPP::UART_FR_TXFE) != 0U) { // TX done?
uint16_t fifo = DPP::UART_TXFIFO_DEPTH; // max bytes we can accept
QF_INT_DISABLE();
uint8_t const *block = QS::getBlock(&fifo); // try to get next block
QF_INT_ENABLE();
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// put the CPU and peripherals to the low-power mode
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
__WFI(); // Wait-For-Interrupt
#endif
}
//----------------------------------------------------------------------------
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *) {
static uint8_t qsBuf[6*256]; // buffer for Quantum Spy
uint32_t tmp;
initBuf(qsBuf, sizeof(qsBuf));
// enable the peripherals used by the UART0
SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0
SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// configure UART0 pins for UART operation
tmp = (1 << 0) | (1 << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((ROM_SysCtlClockGet() * 8U) / DPP::UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = 0x60U; // configure 8-N-1 operation
UART0->LCRH |= 0x10U;
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
DPP::QS_tickPeriod_ = ROM_SysCtlClockGet() / DPP::BSP_TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
// QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
// QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
// QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
// QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
// QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
// QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
// QS_FILTER_OFF(QS_QF_ACTIVE_GET);
// QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
// QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
// QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
// QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
// QS_FILTER_OFF(QS_QF_EQUEUE_GET);
// QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
// QS_FILTER_OFF(QS_QF_MPOOL_INIT);
// QS_FILTER_OFF(QS_QF_MPOOL_GET);
// QS_FILTER_OFF(QS_QF_MPOOL_PUT);
// QS_FILTER_OFF(QS_QF_PUBLISH);
// QS_FILTER_OFF(QS_QF_NEW);
// QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
// QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
// QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
// QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
// QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts disabled
QSTimeCtr ret = DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U) { // flag set?
ret += DPP::QS_tickPeriod_;
}
return ret;
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = DPP::UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
while ((block = getBlock(&fifo)) != static_cast<uint8_t *>(0)) {
// busy-wait until TX FIFO empty
while ((UART0->FR & DPP::UART_FR_TXFE) == 0U) {
}
while (fifo-- != 0U) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = DPP::UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//