Quantum Leaps e0f9c36c2f 4.5.01
2012-08-14 18:00:48 -04:00

328 lines
13 KiB
C++

//////////////////////////////////////////////////////////////////////////////
// Product: "Dining Philosophers Problem" example, Vanilla kernel
// Last Updated for Version: 4.4.00
// Date of the Last Update: Apr 19, 2012
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// Quantum Leaps Web sites: http://www.quantum-leaps.com
// http://www.state-machine.com
// e-mail: info@quantum-leaps.com
//////////////////////////////////////////////////////////////////////////////
#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
#include "lm3s_cmsis.h"
#include "display96x16x1.h"
Q_DEFINE_THIS_FILE
enum ISR_Priorities { // ISR priorities starting from the highest urgency
GPIOPORTA_PRIO,
SYSTICK_PRIO,
// ...
};
#define UART_FR_TXFE 0x00000080
// Local-scope objects -------------------------------------------------------
static uint32_t l_delay = 0UL; // limit for the loop counter in busyDelay()
#define PUSH_BUTTON (1 << 4)
#define USER_LED (1 << 5)
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
#define UART_BAUD_RATE 115200
#define UART_TXFIFO_DEPTH 16
enum AppRecords { // application-specific trace records
PHILO_STAT = QS_USER
};
#endif
//............................................................................
extern "C" void SysTick_Handler(void) __attribute__((__interrupt__));
extern "C" void SysTick_Handler(void) {
#ifdef Q_SPY
uint32_t dummy = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
#endif
QF::TICK(&l_SysTick_Handler); // process all armed time events
}
//............................................................................
void BSP_init(void) {
// set the system clock as specified in lm3s_config.h (20MHz from PLL)
SystemInit();
// enable clock to the peripherals used by the application
SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); // enable clock to GPIOA & C
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// configure the LED and push button
GPIOC->DIR |= USER_LED; // set direction: output
GPIOC->DEN |= USER_LED; // digital enable
GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off
GPIOC->DIR &= ~PUSH_BUTTON; // set direction: input
GPIOC->DEN |= PUSH_BUTTON; // digital enable
Display96x16x1Init(1); // initialize the OLED display
Display96x16x1StringDraw("Dining Philos", 0, 0);
Display96x16x1StringDraw("0 ,1 ,2 ,3 ,4", 0, 1);
if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
}
//............................................................................
void BSP_displyPhilStat(uint8_t n, char const *stat) {
char str[2];
str[0] = stat[0];
str[1] = '\0';
Display96x16x1StringDraw(str, (3*6*n + 6), 1);
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP_driveLED(uint8_t state) {
if (state != 0) {
GPIOC->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on
}
else {
GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off
}
}
//............................................................................
void BSP_busyDelay(void) {
uint32_t volatile i = l_delay;
while (i-- > 0UL) { // busy-wait loop
}
}
//............................................................................
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC);
// set priorities of all interrupts in the system...
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO);
NVIC_EnableIRQ(GPIOPortA_IRQn);
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QF::onIdle(void) { // entered with interrupts LOCKED, see NOTE01
// toggle the User LED on and then off, see NOTE02
GPIOC->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on
GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off
#ifdef Q_SPY
QF_INT_ENABLE();
if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
uint8_t const *block;
QF_INT_DISABLE();
block = QS::getBlock(&fifo); // try to get next block to transmit
QF_INT_ENABLE();
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// put the CPU and peripherals to the low-power mode
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
__WFI(); // Wait-For-Interrupt
QF_INT_ENABLE();
#else
QF_INT_ENABLE();
#endif
}
//............................................................................
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
(void)file; // avoid compiler warning
(void)line; // avoid compiler warning
QF_INT_DISABLE(); // make sure that all interrupts are disabled
for (;;) { // NOTE: replace the loop with reset for final version
}
}
//............................................................................
// error routine that is called if the CMSIS library encounters an error
extern "C" void assert_failed(char const *file, int line) {
Q_onAssert(file, line);
}
//----------------------------------------------------------------------------
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[6*256]; // buffer for Quantum Spy
uint32_t tmp;
initBuf(qsBuf, sizeof(qsBuf));
// enable the peripherals used by the UART0
SYSCTL->RCGC1 |= (1 << 0); // enable clock to UART0
SYSCTL->RCGC2 |= (1 << 0); // enable clock to GPIOA
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// configure UART0 pins for UART operation
tmp = (1 << 0) | (1 << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2;
UART0->IBRD = tmp / 64;
UART0->FBRD = tmp % 64;
UART0->LCRH = 0x60; // configure 8-N-1 operation
UART0->LCRH |= 0x10;
UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9);
QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_GET);
QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_GET);
QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
QS_FILTER_OFF(QS_QF_MPOOL_INIT);
QS_FILTER_OFF(QS_QF_MPOOL_GET);
QS_FILTER_OFF(QS_QF_MPOOL_PUT);
QS_FILTER_OFF(QS_QF_PUBLISH);
QS_FILTER_OFF(QS_QF_NEW);
QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // flag not set?
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) {
// busy-wait until TX FIFO empty
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
//////////////////////////////////////////////////////////////////////////////
// NOTE01:
// The QF_onIdle() callback is called with interrupts locked, because the
// determination of the idle condition might change by any interrupt posting
// an event. QF::onIdle() must internally unlock interrupts, ideally
// atomically with putting the CPU to the power-saving mode.
//
// NOTE02:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//