Quantum Leaps bd38a964cb 5.6.5
2016-06-10 21:51:18 -04:00

927 lines
33 KiB
C++

///***************************************************************************
// Product: "Fly 'n' Shoot" game example, EFM32-SLSTK3401A board, QV kernel
// Last Updated for Version: 5.6.5
// Date of the Last Update: 2016-06-06
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// http://www.state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "game.h"
#include "bsp.h"
#include "em_device.h" // the device specific header (SiLabs)
#include "em_cmu.h" // Clock Management Unit (SiLabs)
#include "em_gpio.h" // GPIO (SiLabs)
#include "em_usart.h" // USART (SiLabs)
#include "display_ls013b7dh03.h" // LS013b7DH03 display (SiLabs/QL)
// add other drivers if necessary...
// namespace GAME ************************************************************
namespace GAME {
Q_DEFINE_THIS_FILE
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
USART0_RX_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
enum KernelAwareISRs {
GPIO_EVEN_PRIO = QF_AWARE_ISR_CMSIS_PRI, // see NOTE00
SYSTICK_PRIO,
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// Local-scope objects -------------------------------------------------------
#define LED_PORT gpioPortF
#define LED0_PIN 4
#define LED1_PIN 5
#define PB_PORT gpioPortF
#define PB0_PIN 6
#define PB1_PIN 7
/* LCD geometry and frame buffer */
static uint32_t l_fb[BSP_SCREEN_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
/* the walls buffer */
static uint32_t l_walls[GAME_TUNNEL_HEIGHT + 1][BSP_SCREEN_WIDTH / 32U];
static unsigned l_rnd; /* random seed */
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h);
static void paintBitsClear(uint8_t x, uint8_t y,
uint8_t const *bits, uint8_t h);
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static uint8_t const l_SysTick_Handler = (uint8_t)0;
static uint8_t const l_GPIO_EVEN_IRQHandler = (uint8_t)0;
static USART_TypeDef * const l_USART0 = ((USART_TypeDef *)(0x40010000UL));
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
COMMAND_STAT
};
#endif
// ISRs used in this project =================================================
extern "C" {
//............................................................................
void SysTick_Handler(void); // prototype
void SysTick_Handler(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
QP::QF::TICK_X(0U, &l_SysTick_Handler); // process time events for rate 0
static QP::QEvt const tickEvt = { TIME_TICK_SIG, 0U, 0U };
QP::QF::PUBLISH(&tickEvt, &l_SysTick_Handler); // publish to subscribers
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = ~GPIO->P[PB_PORT].DIN; // read PB0 and BP1
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & (1U << PB0_PIN)) != 0U) { // debounced PB0 state changed?
if ((buttons.depressed & (1U << PB0_PIN)) != 0U) { // PB0 depressed?
static QP::QEvt const trigEvt = { GAME::PLAYER_TRIGGER_SIG, 0U, 0U};
QP::QF::PUBLISH(&trigEvt, &l_SysTick_Handler);
}
}
}
//............................................................................
void GPIO_EVEN_IRQHandler(void); // prototype
void GPIO_EVEN_IRQHandler(void) {
// for testing...
AO_Tunnel->POST(Q_NEW(QP::QEvt, MAX_PUB_SIG), &l_GPIO_EVEN_IRQHandler);
}
//............................................................................
void USART0_RX_IRQHandler(void); // prototype
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
// QK_ISR_EXIT and they cannot post or publish events.
//
void USART0_RX_IRQHandler(void) {
// while RX FIFO NOT empty
while ((GAME::l_USART0->STATUS & USART_STATUS_RXDATAV) != 0) {
uint32_t b = GAME::l_USART0->RXDATA;
QP::QS::rxPut(b);
}
}
#else
void USART0_RX_IRQHandler(void) {}
#endif // Q_SPY
} // extern "C"
// BSP functions =============================================================
void BSP_init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// configure the FPU usage by choosing one of the options...
// Do NOT to use the automatic FPU state preservation and
// do NOT to use the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in ONE task only and not
// in any ISR. This option should be used with CAUTION.
//
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
// enable clock for to the peripherals used by this application...
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
// configure the LEDs
GPIO_PinModeSet(LED_PORT, LED0_PIN, gpioModePushPull, 0);
GPIO_PinModeSet(LED_PORT, LED1_PIN, gpioModePushPull, 0);
GPIO_PinOutClear(LED_PORT, LED0_PIN);
GPIO_PinOutClear(LED_PORT, LED1_PIN);
// configure the Buttons
GPIO_PinModeSet(PB_PORT, PB0_PIN, gpioModeInputPull, 1);
GPIO_PinModeSet(PB_PORT, PB1_PIN, gpioModeInputPull, 1);
/* Initialize the DISPLAY driver. */
if (!Display_init()) {
Q_ERROR();
}
// initialize the QS software tracing
if (!QS_INIT((void *)0)) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_GPIO_EVEN_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//..........................................................................*/
void BSP_updateScreen(void) {
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
Display_sendPA(&l_fb[0][0], 0, LS013B7DH03_HEIGHT);
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
}
//..........................................................................*/
void BSP_clearFB() {
uint_fast8_t y;
for (y = 0U; y < BSP_SCREEN_HEIGHT; ++y) {
l_fb[y][0] = 0U;
l_fb[y][1] = 0U;
l_fb[y][2] = 0U;
l_fb[y][3] = 0U;
}
}
//..........................................................................*/
void BSP_clearWalls() {
uint_fast8_t y;
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
l_walls[y][0] = 0U;
l_walls[y][1] = 0U;
l_walls[y][2] = 0U;
l_walls[y][3] = 0U;
}
}
//..........................................................................*/
bool BSP_isThrottle(void) { // is the throttle button depressed?
return (GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) == 0U;
}
//..........................................................................*/
void BSP_paintString(uint8_t x, uint8_t y, char const *str) {
static uint8_t const font5x7[95][7] = {
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U }, //
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x00U, 0x00U, 0x04U }, // !
{ 0x0AU, 0x0AU, 0x0AU, 0x00U, 0x00U, 0x00U, 0x00U }, // "
{ 0x0AU, 0x0AU, 0x1FU, 0x0AU, 0x1FU, 0x0AU, 0x0AU }, // #
{ 0x04U, 0x1EU, 0x05U, 0x0EU, 0x14U, 0x0FU, 0x04U }, // $
{ 0x03U, 0x13U, 0x08U, 0x04U, 0x02U, 0x19U, 0x18U }, // %
{ 0x06U, 0x09U, 0x05U, 0x02U, 0x15U, 0x09U, 0x16U }, // &
{ 0x06U, 0x04U, 0x02U, 0x00U, 0x00U, 0x00U, 0x00U }, // '
{ 0x08U, 0x04U, 0x02U, 0x02U, 0x02U, 0x04U, 0x08U }, // (
{ 0x02U, 0x04U, 0x08U, 0x08U, 0x08U, 0x04U, 0x02U }, // )
{ 0x00U, 0x04U, 0x15U, 0x0EU, 0x15U, 0x04U, 0x00U }, // *
{ 0x00U, 0x04U, 0x04U, 0x1FU, 0x04U, 0x04U, 0x00U }, // +
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x04U, 0x02U }, // ,
{ 0x00U, 0x00U, 0x00U, 0x1FU, 0x00U, 0x00U, 0x00U }, // -
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x06U, 0x06U }, // .
{ 0x00U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x00U }, // /
{ 0x0EU, 0x11U, 0x19U, 0x15U, 0x13U, 0x11U, 0x0EU }, // 0
{ 0x04U, 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // 1
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x02U, 0x1FU }, // 2
{ 0x1FU, 0x08U, 0x04U, 0x08U, 0x10U, 0x11U, 0x0EU }, // 3
{ 0x08U, 0x0CU, 0x0AU, 0x09U, 0x1FU, 0x08U, 0x08U }, // 4
{ 0x1FU, 0x01U, 0x0FU, 0x10U, 0x10U, 0x11U, 0x0EU }, // 5
{ 0x0CU, 0x02U, 0x01U, 0x0FU, 0x11U, 0x11U, 0x0EU }, // 6
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x02U, 0x02U }, // 7
{ 0x0EU, 0x11U, 0x11U, 0x0EU, 0x11U, 0x11U, 0x0EU }, // 8
{ 0x0EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x08U, 0x06U }, // 9
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x06U, 0x00U }, // :
{ 0x00U, 0x06U, 0x06U, 0x00U, 0x06U, 0x04U, 0x02U }, // ;
{ 0x08U, 0x04U, 0x02U, 0x01U, 0x02U, 0x04U, 0x08U }, // <
{ 0x00U, 0x00U, 0x1FU, 0x00U, 0x1FU, 0x00U, 0x00U }, // =
{ 0x02U, 0x04U, 0x08U, 0x10U, 0x08U, 0x04U, 0x02U }, // >
{ 0x0EU, 0x11U, 0x10U, 0x08U, 0x04U, 0x00U, 0x04U }, // ?
{ 0x0EU, 0x11U, 0x10U, 0x16U, 0x15U, 0x15U, 0x0EU }, // @
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U }, // A
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x11U, 0x11U, 0x0FU }, // B
{ 0x0EU, 0x11U, 0x01U, 0x01U, 0x01U, 0x11U, 0x0EU }, // C
{ 0x07U, 0x09U, 0x11U, 0x11U, 0x11U, 0x09U, 0x07U }, // D
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x1FU }, // E
{ 0x1FU, 0x01U, 0x01U, 0x0FU, 0x01U, 0x01U, 0x01U }, // F
{ 0x0EU, 0x11U, 0x01U, 0x1DU, 0x11U, 0x11U, 0x1EU }, // G
{ 0x11U, 0x11U, 0x11U, 0x1FU, 0x11U, 0x11U, 0x11U }, // H
{ 0x0EU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // I
{ 0x1CU, 0x08U, 0x08U, 0x08U, 0x08U, 0x09U, 0x06U }, // J
{ 0x11U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U, 0x11U }, // K
{ 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x1FU }, // L
{ 0x11U, 0x1BU, 0x15U, 0x15U, 0x11U, 0x11U, 0x11U }, // M
{ 0x11U, 0x11U, 0x13U, 0x15U, 0x19U, 0x11U, 0x11U }, // N
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, // O
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x01U, 0x01U, 0x01U }, // P
{ 0x0EU, 0x11U, 0x11U, 0x11U, 0x15U, 0x09U, 0x16U }, // Q
{ 0x0FU, 0x11U, 0x11U, 0x0FU, 0x05U, 0x09U, 0x11U }, // R
{ 0x1EU, 0x01U, 0x01U, 0x0EU, 0x10U, 0x10U, 0x0FU }, // S
{ 0x1FU, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, // T
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0EU }, // U
{ 0x11U, 0x11U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, // V
{ 0x11U, 0x11U, 0x11U, 0x15U, 0x15U, 0x15U, 0x0AU }, // W
{ 0x11U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U, 0x11U }, // X
{ 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U, 0x04U, 0x04U }, // Y
{ 0x1FU, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U, 0x1FU }, // Z
{ 0x0EU, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x0EU }, // [
{ 0x00U, 0x01U, 0x02U, 0x04U, 0x08U, 0x10U, 0x00U }, // back-slash
{ 0x0EU, 0x08U, 0x08U, 0x08U, 0x08U, 0x08U, 0x0EU }, // ]
{ 0x04U, 0x0AU, 0x11U, 0x00U, 0x00U, 0x00U, 0x00U }, // ^
{ 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x1FU }, // _
{ 0x02U, 0x04U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, // `
{ 0x00U, 0x00U, 0x0EU, 0x10U, 0x1EU, 0x11U, 0x1EU }, // a
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x0FU }, // b
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x01U, 0x11U, 0x0EU }, // c
{ 0x10U, 0x10U, 0x16U, 0x19U, 0x11U, 0x11U, 0x1EU }, // d
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x1FU, 0x01U, 0x0EU }, // e
{ 0x0CU, 0x12U, 0x02U, 0x07U, 0x02U, 0x02U, 0x02U }, // f
{ 0x00U, 0x1EU, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, // g
{ 0x01U, 0x01U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, // h
{ 0x04U, 0x00U, 0x06U, 0x04U, 0x04U, 0x04U, 0x0EU }, // i
{ 0x08U, 0x00U, 0x0CU, 0x08U, 0x08U, 0x09U, 0x06U }, // j
{ 0x01U, 0x01U, 0x09U, 0x05U, 0x03U, 0x05U, 0x09U }, // k
{ 0x06U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x0EU }, // l
{ 0x00U, 0x00U, 0x0BU, 0x15U, 0x15U, 0x11U, 0x11U }, // m
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x11U, 0x11U, 0x11U }, // n
{ 0x00U, 0x00U, 0x0EU, 0x11U, 0x11U, 0x11U, 0x0EU }, // o
{ 0x00U, 0x00U, 0x0FU, 0x11U, 0x0FU, 0x01U, 0x01U }, // p
{ 0x00U, 0x00U, 0x16U, 0x19U, 0x1EU, 0x10U, 0x10U }, // q
{ 0x00U, 0x00U, 0x0DU, 0x13U, 0x01U, 0x01U, 0x01U }, // r
{ 0x00U, 0x00U, 0x0EU, 0x01U, 0x0EU, 0x10U, 0x0FU }, // s
{ 0x02U, 0x02U, 0x07U, 0x02U, 0x02U, 0x12U, 0x0CU }, // t
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x19U, 0x16U }, // u
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x11U, 0x0AU, 0x04U }, // v
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x15U, 0x15U, 0x0AU }, // w
{ 0x00U, 0x00U, 0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U }, // x
{ 0x00U, 0x00U, 0x11U, 0x11U, 0x1EU, 0x10U, 0x0EU }, // y
{ 0x00U, 0x00U, 0x1FU, 0x08U, 0x04U, 0x02U, 0x1FU }, // z
{ 0x08U, 0x04U, 0x04U, 0x02U, 0x04U, 0x04U, 0x08U }, // {
{ 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U }, // |
{ 0x02U, 0x04U, 0x04U, 0x08U, 0x04U, 0x04U, 0x02U }, // }
{ 0x02U, 0x15U, 0x08U, 0x00U, 0x00U, 0x00U, 0x00U }, // ~
};
for (; *str != '\0'; ++str, x += 6) {
uint8_t const *ch = &font5x7[*str - ' '][0];
paintBitsClear(x, y, ch, 7);
}
}
//==========================================================================*/
typedef struct { // the auxiliary structure to hold const bitmaps
uint8_t const *bits; // the bits in the bitmap
uint8_t height; // the height of the bitmap
} Bitmap;
// bitmap of the Ship:
//
// x....
// xxx..
// xxxxx
//
static uint8_t const ship_bits[] = {
0x01U, 0x07U, 0x1FU
};
// bitmap of the Missile:
//
// xxxx
//
static uint8_t const missile_bits[] = {
0x0FU
};
// bitmap of the Mine type-1:
//
// .x.
// xxx
// .x.
//
static uint8_t const mine1_bits[] = {
0x02U, 0x07U, 0x02U
};
// bitmap of the Mine type-2:
//
// x..x
// .xx.
// .xx.
// x..x
//
static uint8_t const mine2_bits[] = {
0x09U, 0x06U, 0x06U, 0x09U
};
// Mine type-2 is nastier than Mine type-1. The type-2 mine can
// hit the Ship with any of its "tentacles". However, it can be
// destroyed by the Missile only by hitting its center, defined as
// the following bitmap:
//
// ....
// .xx.
// .xx.
//
static uint8_t const mine2_missile_bits[] = {
0x00U, 0x06U, 0x06U
};
//
// The bitmap of the explosion stage 0:
//
// .......
// ...x...
// ..x.x..
// ...x...
//
static uint8_t const explosion0_bits[] = {
0x00U, 0x08U, 0x14U, 0x08U
};
//
// The bitmap of the explosion stage 1:
//
// .......
// ..x.x..
// ...x...
// ..x.x..
//
static uint8_t const explosion1_bits[] = {
0x00U, 0x14U, 0x08U, 0x14U
};
//
// The bitmap of the explosion stage 2:
//
// .x...x.
// ..x.x..
// ...x...
// ..x.x..
// .x...x.
//
static uint8_t const explosion2_bits[] = {
0x11U, 0x0AU, 0x04U, 0x0AU, 0x11U
};
//
// The bitmap of the explosion stage 3:
//
// x..x..x
// .x.x.x.
// ..x.x..
// xx.x.xx
// ..x.x..
// .x.x.x.
// x..x..x
//
static uint8_t const explosion3_bits[] = {
0x49, 0x2A, 0x14, 0x6B, 0x14, 0x2A, 0x49
};
static Bitmap const l_bitmap[MAX_BMP] = {
{ ship_bits, Q_DIM(ship_bits) },
{ missile_bits, Q_DIM(missile_bits) },
{ mine1_bits, Q_DIM(mine1_bits) },
{ mine2_bits, Q_DIM(mine2_bits) },
{ mine2_missile_bits, Q_DIM(mine2_missile_bits) },
{ explosion0_bits, Q_DIM(explosion0_bits) },
{ explosion1_bits, Q_DIM(explosion1_bits) },
{ explosion2_bits, Q_DIM(explosion2_bits) },
{ explosion3_bits, Q_DIM(explosion3_bits) }
};
//..........................................................................*/
void BSP_paintBitmap(uint8_t x, uint8_t y, uint8_t bmp_id) {
Bitmap const *bmp = &l_bitmap[bmp_id];
paintBits(x, y, bmp->bits, bmp->height);
}
//..........................................................................*/
void BSP_advanceWalls(uint8_t top, uint8_t bottom) {
uint_fast8_t y;
for (y = 0U; y < GAME_TUNNEL_HEIGHT; ++y) {
// shift the walls one pixel to the left
l_walls[y][0] = (l_walls[y][0] >> 1) | (l_walls[y][1] << 31);
l_walls[y][1] = (l_walls[y][1] >> 1) | (l_walls[y][2] << 31);
l_walls[y][2] = (l_walls[y][2] >> 1) | (l_walls[y][3] << 31);
l_walls[y][3] = (l_walls[y][3] >> 1);
// add new column of walls at the end
if (y <= top) {
l_walls[y][3] |= (1U << 31);
}
if (y >= (GAME_TUNNEL_HEIGHT - bottom)) {
l_walls[y][3] |= (1U << 31);
}
// copy the walls to the frame buffer
l_fb[y][0] = l_walls[y][0];
l_fb[y][1] = l_walls[y][1];
l_fb[y][2] = l_walls[y][2];
l_fb[y][3] = l_walls[y][3];
}
}
//..........................................................................*/
bool BSP_doBitmapsOverlap(uint8_t bmp_id1, uint8_t x1, uint8_t y1,
uint8_t bmp_id2, uint8_t x2, uint8_t y2)
{
uint8_t y;
uint8_t y0;
uint8_t h;
uint32_t bits1;
uint32_t bits2;
Bitmap const *bmp1;
Bitmap const *bmp2;
Q_REQUIRE((bmp_id1 < Q_DIM(l_bitmap)) && (bmp_id2 < Q_DIM(l_bitmap)));
// are the bitmaps close enough in x?
if (x1 >= x2) {
if (x1 > x2 + 8U) {
return false;
}
x1 -= x2;
x2 = 0U;
}
else {
if (x2 > x1 + 8U) {
return false;
}
x2 -= x1;
x1 = 0U;
}
bmp1 = &l_bitmap[bmp_id1];
bmp2 = &l_bitmap[bmp_id2];
if ((y1 <= y2) && (y1 + bmp1->height > y2)) {
y0 = y2 - y1;
h = y1 + bmp1->height - y2;
if (h > bmp2->height) {
h = bmp2->height;
}
for (y = 0; y < h; ++y) { // scan over the overlapping rows
bits1 = ((uint32_t)bmp1->bits[y + y0] << x1);
bits2 = ((uint32_t)bmp2->bits[y] << x2);
if ((bits1 & bits2) != 0U) { // do the bits overlap?
return true; // yes!
}
}
}
else {
if ((y1 > y2) && (y2 + bmp2->height > y1)) {
y0 = y1 - y2;
h = y2 + bmp2->height - y1;
if (h > bmp1->height) {
h = bmp1->height;
}
for (y = 0; y < h; ++y) { // scan over the overlapping rows
bits1 = ((uint32_t)bmp1->bits[y] << x1);
bits2 = ((uint32_t)bmp2->bits[y + y0] << x2);
if ((bits1 & bits2) != 0U) { // do the bits overlap?
return true; // yes!
}
}
}
}
return false; // the bitmaps do not overlap
}
//..........................................................................*/
bool BSP_isWallHit(uint8_t bmp_id, uint8_t x, uint8_t y) {
Bitmap const *bmp = &l_bitmap[bmp_id];
uint32_t shft = (x & 0x1FU);
uint32_t *walls = &l_walls[y][x >> 5];
for (y = 0; y < bmp->height; ++y, walls += (BSP_SCREEN_WIDTH >> 5)) {
if (*walls & ((uint32_t)bmp->bits[y] << shft)) {
return true;
}
if (shft > 24U) {
if (*(walls + 1) & ((uint32_t)bmp->bits[y] >> (32U - shft))) {
return true;
}
}
}
return false;
}
//..........................................................................*/
void BSP_updateScore(uint16_t score) {
uint8_t seg[5];
char str[5];
if (score == 0U) {
BSP_paintString(1U, BSP_SCREEN_HEIGHT - 8U, "SCORE:");
}
seg[0] = score % 10U; score /= 10U;
seg[1] = score % 10U; score /= 10U;
seg[2] = score % 10U; score /= 10U;
seg[3] = score % 10U;
// update the SCORE area on the screeen
str[0] = seg[3] + '0';
str[1] = seg[2] + '0';
str[2] = seg[1] + '0';
str[3] = seg[0] + '0';
str[4] = '\0';
BSP_paintString(6U*6U, BSP_SCREEN_HEIGHT - 8U, str);
}
//............................................................................
void BSP_displayOn(void) {
Display_enable(true);
}
//............................................................................
void BSP_displayOff(void) {
Display_enable(false);
}
//............................................................................
uint32_t BSP_random(void) { // a very cheap pseudo-random-number generator
// Some flating point code is to exercise the VFP...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
return (rnd >> 8);
}
//............................................................................
void BSP_randomSeed(uint32_t seed) {
l_rnd = seed;
}
//..........................................................................*/
static void paintBits(uint8_t x, uint8_t y, uint8_t const *bits, uint8_t h) {
uint32_t *fb = &l_fb[y][x >> 5];
uint32_t shft = (x & 0x1FU);
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
*fb |= ((uint32_t)bits[y] << shft);
if (shft > 24U) {
*(fb + 1) |= ((uint32_t)bits[y] >> (32U - shft));
}
}
}
//..........................................................................*/
static void paintBitsClear(uint8_t x, uint8_t y,
uint8_t const *bits, uint8_t h)
{
uint32_t *fb = &l_fb[y][x >> 5];
uint32_t shft = (x & 0x1FU);
uint32_t mask1 = ~((uint32_t)0xFFU << shft);
uint32_t mask2;
if (shft > 24U) {
mask2 = ~(0xFFU >> (32U - shft));
}
for (y = 0; y < h; ++y, fb += (BSP_SCREEN_WIDTH >> 5)) {
*fb = ((*fb & mask1) | ((uint32_t)bits[y] << shft));
if (shft > 24U) {
*(fb + 1) = ((*(fb + 1) & mask2)
| ((uint32_t)bits[y] >> (32U - shft)));
}
}
}
} // namespace GAME
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
SysTick_Config(SystemCoreClock / GAME::BSP_TICKS_PER_SEC);
// assing all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(USART0_RX_IRQn, GAME::USART0_RX_PRIO);
NVIC_SetPriority(SysTick_IRQn, GAME::SYSTICK_PRIO);
NVIC_SetPriority(GPIO_EVEN_IRQn, GAME::GPIO_EVEN_PRIO);
// ...
// enable IRQs...
NVIC_EnableIRQ(GPIO_EVEN_IRQn);
#ifdef Q_SPY
NVIC_EnableIRQ(USART0_RX_IRQn); // UART0 interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QV::onIdle(void) { // called with interrupts disabled, see NOTE01
// toggle the User LED on and then off, see NOTE02
GPIO->P[LED_PORT].DOUT |= (1U << LED1_PIN);
GPIO->P[LED_PORT].DOUT &= ~(1U << LED1_PIN);
#ifdef Q_SPY
QF_INT_ENABLE();
QS::rxParse(); // parse all the received bytes
if ((GAME::l_USART0->STATUS & USART_STATUS_TXBL) != 0) { // is TXE empty?
uint16_t b;
QF_INT_DISABLE();
b = QS::getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { // not End-Of-Data?
GAME::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M MCU.
//
QV_CPU_SLEEP(); // atomically go to sleep and enable interrupts
#else
QF_INT_ENABLE(); // just enable interrupts
#endif
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
#ifndef NDEBUG
// light up both LEDs
GPIO->P[LED_PORT].DOUT |= ((1U << LED0_PIN) | (1U << LED1_PIN));
// for debugging, hang on in an endless loop until PB1 is pressed...
while ((GPIO->P[PB_PORT].DIN & (1U << PB1_PIN)) != 0) {
}
#endif
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
static USART_InitAsync_TypeDef init = {
usartEnable, // Enable RX/TX when init completed
0, // Use current clock for configuring baudrate
115200, // 115200 bits/s
usartOVS16, // 16x oversampling
usartDatabits8, // 8 databits
usartNoParity, // No parity
usartStopbits1, // 1 stopbit
0, // Do not disable majority vote
0, // Not USART PRS input mode
usartPrsRxCh0, // PRS channel 0
0, // Auto CS functionality enable/disable switch
0, // Auto CS Hold cycles
0 // Auto CS Setup cycles
};
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// Enable peripheral clocks
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_GPIO, true);
// To avoid false start, configure output as high
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 1); // TX pin
GPIO_PinModeSet(gpioPortA, 1, gpioModeInput, 0); // RX pin
// Enable DK RS232/UART switch
GPIO_PinModeSet(gpioPortA, 5, gpioModePushPull, 1);
CMU_ClockEnable(cmuClock_USART0, true);
// configure the UART for the desired baud rate, 8-N-1 operation
init.enable = usartDisable;
USART_InitAsync(GAME::l_USART0, &init);
// enable pins at correct UART/USART location.
GAME::l_USART0->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
GAME::l_USART0->ROUTELOC0 = (GAME::l_USART0->ROUTELOC0 &
~(_USART_ROUTELOC0_TXLOC_MASK
| _USART_ROUTELOC0_RXLOC_MASK));
// Clear previous RX interrupts
USART_IntClear(GAME::l_USART0, USART_IF_RXDATAV);
NVIC_ClearPendingIRQ(USART0_RX_IRQn);
// Enable RX interrupts
USART_IntEnable(GAME::l_USART0, USART_IF_RXDATAV);
// NOTE: do not enable the UART0 interrupt in the NVIC yet.
// Wait till QF::onStartup()
// Finally enable the UART
USART_Enable(GAME::l_USART0, usartEnable);
GAME::QS_tickPeriod_ = SystemCoreClock / GAME::BSP_TICKS_PER_SEC;
GAME::QS_tickTime_ = GAME::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(GAME::PHILO_STAT);
QS_FILTER_ON(GAME::COMMAND_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return GAME::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return GAME::QS_tickTime_ + GAME::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_INT_DISABLE();
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_INT_ENABLE();
// while TXE not empty
while ((GAME::l_USART0->STATUS & USART_STATUS_TXBL) == 0U) {
}
GAME::l_USART0->TXDATA = (b & 0xFFU); // put into the DR register
QF_INT_DISABLE();
}
QF_INT_ENABLE();
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId, uint32_t param) {
(void)cmdId;
(void)param;
// application-specific record
QS_BEGIN(GAME::COMMAND_STAT, static_cast<void *>(0))
QS_U8(2, cmdId);
QS_U32(8, param);
QS_END()
if (cmdId == 10U) {
assert_failed("QS_onCommand", 11);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE00:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the QF_AWARE_ISR_CMSIS_PRI level (i.e.,
// with the numerical values of priorities equal or higher than
// QF_AWARE_ISR_CMSIS_PRI) are allowed to call the QK_ISR_ENTRY/QK_ISR_ENTRY
// macros or any other QF/QK services. These ISRs are "QF-aware".
//
// Conversely, any ISRs prioritized above the QF_AWARE_ISR_CMSIS_PRI priority
// level (i.e., with the numerical values of priorities less than
// QF_AWARE_ISR_CMSIS_PRI) are never disabled and are not aware of the kernel.
// Such "QF-unaware" ISRs cannot call any QF/QK services. In particular they
// can NOT call the macros QK_ISR_ENTRY/QK_ISR_ENTRY. The only mechanism
// by which a "QF-unaware" ISR can communicate with the QF framework is by
// triggering a "QF-aware" ISR, which can post/publish events.
//
// NOTE01:
// The QV:onIdle() callback is called with interrupts disabled, because the
// determination of the idle condition might change by any interrupt posting
// an event. QV::onIdle() must internally enable interrupts, ideally
// atomically with putting the CPU to the power-saving mode.
//
// NOTE02:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//