mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-14 05:42:57 +08:00
146 lines
5.6 KiB
C++
146 lines
5.6 KiB
C++
/// @file
|
|
/// @brief QF/C++ port to POSIX/P-threads
|
|
/// @cond
|
|
///***************************************************************************
|
|
/// Last updated for version 5.7.2
|
|
/// Last updated on 2016-09-28
|
|
///
|
|
/// Q u a n t u m L e a P s
|
|
/// ---------------------------
|
|
/// innovating embedded systems
|
|
///
|
|
/// Copyright (C) Quantum Leaps, LLC. All rights reserved.
|
|
///
|
|
/// This program is open source software: you can redistribute it and/or
|
|
/// modify it under the terms of the GNU General Public License as published
|
|
/// by the Free Software Foundation, either version 3 of the License, or
|
|
/// (at your option) any later version.
|
|
///
|
|
/// Alternatively, this program may be distributed and modified under the
|
|
/// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
/// the GNU General Public License and are specifically designed for
|
|
/// licensees interested in retaining the proprietary status of their code.
|
|
///
|
|
/// This program is distributed in the hope that it will be useful,
|
|
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
/// GNU General Public License for more details.
|
|
///
|
|
/// You should have received a copy of the GNU General Public License
|
|
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
///
|
|
/// Contact information:
|
|
/// http://www.state-machine.com
|
|
/// mailto:info@state-machine.com
|
|
///***************************************************************************
|
|
/// @endcond
|
|
|
|
#ifndef qf_port_h
|
|
#define qf_port_h
|
|
|
|
// Linux event queue and thread types
|
|
#define QF_EQUEUE_TYPE QEQueue
|
|
#define QF_OS_OBJECT_TYPE pthread_cond_t
|
|
#define QF_THREAD_TYPE uint8_t
|
|
|
|
// The maximum number of active objects in the application
|
|
#define QF_MAX_ACTIVE 63
|
|
|
|
// The number of system clock tick rates
|
|
#define QF_MAX_TICK_RATE 2
|
|
|
|
// various QF object sizes configuration for this port
|
|
#define QF_EVENT_SIZ_SIZE 4
|
|
#define QF_EQUEUE_CTR_SIZE 4
|
|
#define QF_MPOOL_SIZ_SIZE 4
|
|
#define QF_MPOOL_CTR_SIZE 4
|
|
#define QF_TIMEEVT_CTR_SIZE 4
|
|
|
|
/* QF interrupt disable/enable, see NOTE1 */
|
|
#define QF_INT_DISABLE() pthread_mutex_lock(&QP::QF_pThreadMutex_)
|
|
#define QF_INT_ENABLE() pthread_mutex_unlock(&QP::QF_pThreadMutex_)
|
|
|
|
// QF critical section entry/exit for POSIX, see NOTE1
|
|
// QF_CRIT_STAT_TYPE not defined
|
|
#define QF_CRIT_ENTRY(dummy) QF_INT_DISABLE()
|
|
#define QF_CRIT_EXIT(dummy) QF_INT_ENABLE()
|
|
|
|
#include <pthread.h> // POSIX-thread API
|
|
#include "qep_port.h" // QEP port
|
|
#include "qequeue.h" // POSIX needs event-queue
|
|
#include "qmpool.h" // POSIX needs memory-pool
|
|
#include "qpset.h" // POSIX needs priority-set
|
|
#include "qf.h" // QF platform-independent public interface
|
|
|
|
namespace QP {
|
|
|
|
void QF_setTickRate(uint32_t ticksPerSec); // set clock tick rate
|
|
void QF_onClockTick(void); // clock tick callback (provided in the app)
|
|
|
|
extern pthread_mutex_t QF_pThreadMutex_; // mutex for QF critical section
|
|
|
|
} // namespace QP
|
|
|
|
//****************************************************************************
|
|
// interface used only inside QF, but not in applications
|
|
//
|
|
#ifdef QP_IMPL
|
|
|
|
// POSIX-specific scheduler locking (not used at this point)
|
|
#define QF_SCHED_STAT_
|
|
#define QF_SCHED_LOCK_(dummy) ((void)0)
|
|
#define QF_SCHED_UNLOCK_() ((void)0)
|
|
|
|
// native QF event queue operations...
|
|
#define QACTIVE_EQUEUE_WAIT_(me_) \
|
|
while ((me_)->m_eQueue.m_frontEvt == static_cast<QEvt const *>(0)) \
|
|
pthread_cond_wait(&(me_)->m_osObject, &QF_pThreadMutex_)
|
|
|
|
#define QACTIVE_EQUEUE_SIGNAL_(me_) \
|
|
pthread_cond_signal(&(me_)->m_osObject) \
|
|
|
|
#define QACTIVE_EQUEUE_ONEMPTY_(me_) ((void)0)
|
|
|
|
// native QF event pool operations...
|
|
#define QF_EPOOL_TYPE_ QMPool
|
|
#define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \
|
|
(p_).init(poolSto_, poolSize_, evtSize_)
|
|
#define QF_EPOOL_EVENT_SIZE_(p_) ((p_).getBlockSize())
|
|
#define QF_EPOOL_GET_(p_, e_, m_) \
|
|
((e_) = static_cast<QEvt *>((p_).get((m_))))
|
|
#define QF_EPOOL_PUT_(p_, e_) ((p_).put(e_))
|
|
|
|
#endif // QP_IMPL
|
|
|
|
// NOTES: ////////////////////////////////////////////////////////////////////
|
|
//
|
|
// NOTE1:
|
|
// QF, like all real-time frameworks, needs to execute certain sections of
|
|
// code indivisibly to avoid data corruption. The most straightforward way of
|
|
// protecting such critical sections of code is disabling and enabling
|
|
// interrupts, which Linux does not allow.
|
|
//
|
|
// This QF port uses therefore a single package-scope p-thread mutex
|
|
// QF_pThreadMutex_ to protect all critical sections. The mutex is locked upon
|
|
// the entry to each critical sectioni and unlocked upon exit.
|
|
//
|
|
// Using the single mutex for all crtical section guarantees that only one
|
|
// thread at a time can execute inside a critical section. This prevents race
|
|
// conditions and data corruption.
|
|
//
|
|
// Please note, however, that the mutex implementation of a critical section
|
|
// behaves differently than the standard interrupt locking. A common mutex
|
|
// ensures that only one thread at a time can execute a critical section, but
|
|
// it does not guarantee that a context switch cannot occur within the
|
|
// critical section. In fact, such context switches probably will happen, but
|
|
// they should not cause concurrency hazards because the mutex eliminates all
|
|
// race conditionis.
|
|
//
|
|
// Unlinke simply disabling and enabling interrupts, the mutex approach is
|
|
// also subject to priority inversions. However, the p-thread mutex
|
|
// implementation, such as Linux p-threads, should support the priority-
|
|
// inheritance protocol.
|
|
//
|
|
|
|
#endif // qf_port_h
|