Quantum Leaps 56d4f80c47 5.8.0
2016-12-01 10:31:49 -05:00

392 lines
14 KiB
C++

//****************************************************************************
// Product: DPP example, STM32F4-Discovery board, ThreadX kernel
// Last updated for version 5.8.0
// Last updated on 2016-11-30
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// http://www.state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "stm32f4xx.h" // CMSIS-compliant header file for the MCU used
#include "stm32f4xx_exti.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_usart.h"
// add other drivers if necessary...
Q_DEFINE_THIS_FILE
// namespace DPP *************************************************************
namespace DPP {
// Local-scope objects -------------------------------------------------------
#define LED_GPIO_PORT GPIOD
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
#define LED4_PIN GPIO_Pin_12
#define LED3_PIN GPIO_Pin_13
#define LED5_PIN GPIO_Pin_14
#define LED6_PIN GPIO_Pin_15
#define BTN_GPIO_PORT GPIOA
#define BTN_GPIO_CLK RCC_AHB1Periph_GPIOA
#define BTN_B1 GPIO_Pin_0
static unsigned l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER
};
#endif
extern "C" {
// ISRs used in this project =================================================
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// Explictily Disable the automatic FPU state preservation as well as
// the FPU lazy stacking
//
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos));
// Initialize thr port for the LEDs
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK , ENABLE);
// GPIO Configuration for the LEDs...
GPIO_InitTypeDef GPIO_struct;
GPIO_struct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_struct.GPIO_Pin = LED3_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off
GPIO_struct.GPIO_Pin = LED4_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED off
GPIO_struct.GPIO_Pin = LED5_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED off
GPIO_struct.GPIO_Pin = LED6_PIN;
GPIO_Init(LED_GPIO_PORT, &GPIO_struct);
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
// Initialize thr port for Button
RCC_AHB1PeriphClockCmd(BTN_GPIO_CLK , ENABLE);
// GPIO Configuration for the Button...
GPIO_struct.GPIO_Pin = BTN_B1;
GPIO_struct.GPIO_Mode = GPIO_Mode_IN;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(BTN_GPIO_PORT, &GPIO_struct);
BSP::randomSeed(1234U);
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
Q_ERROR();
}
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
// exercise the FPU with some floating point computations
float volatile x;
x = 3.1415926F;
x = x + 2.7182818F;
if (stat[0] == 'h') {
LED_GPIO_PORT->BSRRL = LED3_PIN; // turn LED on
}
else {
LED_GPIO_PORT->BSRRH = LED3_PIN; // turn LED off
}
if (stat[0] == 'e') {
LED_GPIO_PORT->BSRRL = LED5_PIN; // turn LED on
}
else {
LED_GPIO_PORT->BSRRH = LED5_PIN; // turn LED on
}
(void)n; // unused parameter (in all but Spy build configuration)
QS_BEGIN(PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t paused) {
if (paused) {
LED_GPIO_PORT->BSRRL = LED4_PIN; // turn LED on
}
else {
LED_GPIO_PORT->BSRRH = LED4_PIN; // turn LED on
}
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
l_rnd = l_rnd * (3U*7U*11U*13U*23U);
return l_rnd >> 8;
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
static TX_TIMER l_tick_timer; // ThreadX timer to call QF::tickX_()
#ifdef Q_SPY
// ThreadX thread and thread function for QS output, see NOTE1
static TX_THREAD l_qs_output_thread;
static void qs_thread_function(ULONG thread_input);
static ULONG qs_thread_stkSto[64];
#endif
// QF callbacks ==============================================================
void QF::onStartup(void) {
//
// NOTE:
// This application uses the ThreadX timer to periodically call
// the QF_tickX_(0) function. Here, only the clock tick rate of 0
// is used, but other timers can be used to call QF_tickX_() for
// other clock tick rates, if needed.
//
// The choice of a ThreadX timer is not the only option. Applications
// might choose to call QF_tickX_() directly from timer interrupts
// or from active object(s).
//
Q_ALLEGE(tx_timer_create(&l_tick_timer, // ThreadX timer object
"QF", // name of the timer
(VOID (*)(ULONG))&QP::QF::tickX_, // expiration function
0U, // expiration function input (tick rate)
1U, // initial ticks
1U, // reschedule ticks
TX_AUTO_ACTIVATE) // automatically activate timer
== TX_SUCCESS);
#ifdef Q_SPY
// start a ThreadX timer to perform QS output. See NOTE1...
Q_ALLEGE(tx_thread_create(&l_qs_output_thread, // thread control block
"QS", // thread name
&qs_thread_function, // thread function
(ULONG)0, // thread input (unsued)
qs_thread_stkSto, // stack start
sizeof(qs_thread_stkSto), // stack size in bytes
TX_MAX_PRIORITIES - 1, // ThreadX priority (lowest possible)
TX_MAX_PRIORITIES - 1, // preemption threshold disabled
TX_NO_TIME_SLICE,
TX_AUTO_START)
== TX_SUCCESS);
#endif // Q_SPY
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
static void qs_thread_function(ULONG /*thread_input*/) { // see NOTE1
for (;;) {
// turn the LED6 on an off to visualize the QS activity
LED_GPIO_PORT->BSRRL = LED6_PIN; // turn LED on
__NOP(); // wait a little to actually see the LED glow
__NOP();
__NOP();
__NOP();
LED_GPIO_PORT->BSRRH = LED6_PIN; // turn LED off
if ((USART2->SR & 0x80U) != 0U) { // is TXE empty?
uint16_t b;
QF_CRIT_STAT_TYPE intStat;
QF_CRIT_ENTRY(intStat);
b = QP::QS::getByte();
QF_CRIT_EXIT(intStat);
if (b != QP::QS_EOD) { // not End-Of-Data?
USART2->DR = (b & 0xFFU); // put into the DR register
}
}
// no blocking in this thread; see NOTE1
}
}
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[1024]; // buffer for Quantum Spy
initBuf(qsBuf, sizeof(qsBuf));
GPIO_InitTypeDef GPIO_struct;
USART_InitTypeDef USART_struct;
// enable peripheral clock for USART2
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
// GPIOA clock enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// GPIOA Configuration: USART2 TX on PA2
GPIO_struct.GPIO_Pin = GPIO_Pin_2;
GPIO_struct.GPIO_Mode = GPIO_Mode_AF;
GPIO_struct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_struct.GPIO_OType = GPIO_OType_PP;
GPIO_struct.GPIO_PuPd = GPIO_PuPd_UP ;
GPIO_Init(GPIOA, &GPIO_struct);
// Connect USART2 pins to AF2
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); // TX = PA2
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); // RX = PA3
USART_struct.USART_BaudRate = 115200;
USART_struct.USART_WordLength = USART_WordLength_8b;
USART_struct.USART_StopBits = USART_StopBits_1;
USART_struct.USART_Parity = USART_Parity_No;
USART_struct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_struct.USART_Mode = USART_Mode_Tx;
USART_Init(USART2, &USART_struct);
USART_Cmd(USART2, ENABLE); // enable USART2
// setup the QS filters...
QS_FILTER_ON(QS_QEP_STATE_ENTRY);
QS_FILTER_ON(QS_QEP_STATE_EXIT);
QS_FILTER_ON(QS_QEP_STATE_INIT);
QS_FILTER_ON(QS_QEP_INIT_TRAN);
QS_FILTER_ON(QS_QEP_INTERN_TRAN);
QS_FILTER_ON(QS_QEP_TRAN);
QS_FILTER_ON(QS_QEP_IGNORED);
QS_FILTER_ON(QS_QEP_DISPATCH);
QS_FILTER_ON(QS_QEP_UNHANDLED);
QS_FILTER_ON(DPP::PHILO_STAT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t b;
QF_CRIT_STAT_TYPE intStat;
QF_CRIT_ENTRY(intStat);
while ((b = getByte()) != QS_EOD) { // while not End-Of-Data...
QF_CRIT_EXIT(intStat);
while ((USART2->SR & USART_FLAG_TXE) == 0U) { // while TXE not empty
}
USART2->DR = (b & 0xFFU); // put into the DR register
QF_CRIT_ENTRY(intStat);
}
QF_CRIT_EXIT(intStat);
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
//TBD
}
//............................................................................
//! callback function to execute a uesr command (to be implemented in BSP)
void QS::onCommand(uint8_t cmdId, uint32_t param) {
(void)cmdId;
(void)param;
//TBD
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE1:
// This application uses the ThreadX thread of the lowest priority to perform
// the QS data output to the host. This is not the only choice available, and
// other applications might choose to peform the QS output some other way.
//
// The lowest-priority thread does not block, so in effect, it becomes the
// idle loop. This presents no problems to ThreadX - its idle task in the
// scheduler does not need to run.
//