mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-28 06:02:56 +08:00
1904 lines
65 KiB
C
1904 lines
65 KiB
C
/***************************************************************************//**
|
|
* @file em_emu.c
|
|
* @brief Energy Management Unit (EMU) Peripheral API
|
|
* @version 4.3.0
|
|
*******************************************************************************
|
|
* @section License
|
|
* <b>Copyright 2016 Silicon Laboratories, Inc. http://www.silabs.com</b>
|
|
*******************************************************************************
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
|
|
* obligation to support this Software. Silicon Labs is providing the
|
|
* Software "AS IS", with no express or implied warranties of any kind,
|
|
* including, but not limited to, any implied warranties of merchantability
|
|
* or fitness for any particular purpose or warranties against infringement
|
|
* of any proprietary rights of a third party.
|
|
*
|
|
* Silicon Labs will not be liable for any consequential, incidental, or
|
|
* special damages, or any other relief, or for any claim by any third party,
|
|
* arising from your use of this Software.
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include <limits.h>
|
|
|
|
#include "em_emu.h"
|
|
#if defined( EMU_PRESENT ) && ( EMU_COUNT > 0 )
|
|
|
|
#include "em_cmu.h"
|
|
#include "em_system.h"
|
|
#include "em_common.h"
|
|
#include "em_assert.h"
|
|
|
|
/***************************************************************************//**
|
|
* @addtogroup emlib
|
|
* @{
|
|
******************************************************************************/
|
|
|
|
/***************************************************************************//**
|
|
* @addtogroup EMU
|
|
* @brief Energy Management Unit (EMU) Peripheral API
|
|
* @details
|
|
* This module contains functions to control the EMU peripheral of Silicon
|
|
* Labs 32-bit MCUs and SoCs. The EMU handles the different low energy modes
|
|
* in Silicon Labs microcontrollers.
|
|
* @{
|
|
******************************************************************************/
|
|
|
|
/* Consistency check, since restoring assumes similar bitpositions in */
|
|
/* CMU OSCENCMD and STATUS regs */
|
|
#if (CMU_STATUS_AUXHFRCOENS != CMU_OSCENCMD_AUXHFRCOEN)
|
|
#error Conflict in AUXHFRCOENS and AUXHFRCOEN bitpositions
|
|
#endif
|
|
#if (CMU_STATUS_HFXOENS != CMU_OSCENCMD_HFXOEN)
|
|
#error Conflict in HFXOENS and HFXOEN bitpositions
|
|
#endif
|
|
#if (CMU_STATUS_LFRCOENS != CMU_OSCENCMD_LFRCOEN)
|
|
#error Conflict in LFRCOENS and LFRCOEN bitpositions
|
|
#endif
|
|
#if (CMU_STATUS_LFXOENS != CMU_OSCENCMD_LFXOEN)
|
|
#error Conflict in LFXOENS and LFXOEN bitpositions
|
|
#endif
|
|
|
|
|
|
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
|
|
/* Fix for errata EMU_E107 - non-WIC interrupt masks. */
|
|
#if defined( _EFM32_GECKO_FAMILY )
|
|
#define ERRATA_FIX_EMU_E107_EN
|
|
#define NON_WIC_INT_MASK_0 (~(0x0dfc0323U))
|
|
#define NON_WIC_INT_MASK_1 (~(0x0U))
|
|
|
|
#elif defined( _EFM32_TINY_FAMILY )
|
|
#define ERRATA_FIX_EMU_E107_EN
|
|
#define NON_WIC_INT_MASK_0 (~(0x001be323U))
|
|
#define NON_WIC_INT_MASK_1 (~(0x0U))
|
|
|
|
#elif defined( _EFM32_GIANT_FAMILY )
|
|
#define ERRATA_FIX_EMU_E107_EN
|
|
#define NON_WIC_INT_MASK_0 (~(0xff020e63U))
|
|
#define NON_WIC_INT_MASK_1 (~(0x00000046U))
|
|
|
|
#elif defined( _EFM32_WONDER_FAMILY )
|
|
#define ERRATA_FIX_EMU_E107_EN
|
|
#define NON_WIC_INT_MASK_0 (~(0xff020e63U))
|
|
#define NON_WIC_INT_MASK_1 (~(0x00000046U))
|
|
|
|
#else
|
|
/* Zero Gecko and future families are not affected by errata EMU_E107 */
|
|
#endif
|
|
|
|
/* Fix for errata EMU_E108 - High Current Consumption on EM4 Entry. */
|
|
#if defined( _EFM32_HAPPY_FAMILY )
|
|
#define ERRATA_FIX_EMU_E108_EN
|
|
#endif
|
|
/** @endcond */
|
|
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
/* DCDCTODVDD output range min/max */
|
|
#define PWRCFG_DCDCTODVDD_VMIN 1200
|
|
#define PWRCFG_DCDCTODVDD_VMAX 3000
|
|
typedef enum
|
|
{
|
|
errataFixDcdcHsInit,
|
|
errataFixDcdcHsTrimSet,
|
|
errataFixDcdcHsLnWaitDone
|
|
} errataFixDcdcHs_TypeDef;
|
|
errataFixDcdcHs_TypeDef errataFixDcdcHsState = errataFixDcdcHsInit;
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
************************** LOCAL VARIABLES ********************************
|
|
******************************************************************************/
|
|
|
|
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
|
|
/**
|
|
* CMU configured oscillator selection and oscillator enable status. When a
|
|
* user configures oscillators, this varaiable shall shadow the configuration.
|
|
* It is used by the EMU module in order to be able to restore the oscillator
|
|
* config after having been in certain energy modes (since HW may automatically
|
|
* alter config when going into an energy mode). It is the responsibility of
|
|
* the CMU module to keep it up-to-date (or a user if not using the CMU API
|
|
* for oscillator control).
|
|
*/
|
|
static uint32_t cmuStatus;
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
static uint16_t cmuHfclkStatus;
|
|
#endif
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
static uint16_t dcdcMaxCurrent_mA;
|
|
static EMU_DcdcLnReverseCurrentControl_TypeDef dcdcReverseCurrentControl;
|
|
#endif
|
|
|
|
/** @endcond */
|
|
|
|
|
|
/*******************************************************************************
|
|
************************** LOCAL FUNCTIONS ********************************
|
|
******************************************************************************/
|
|
|
|
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Restore oscillators and core clock after having been in EM2 or EM3.
|
|
******************************************************************************/
|
|
static void emuRestore(void)
|
|
{
|
|
uint32_t oscEnCmd;
|
|
uint32_t cmuLocked;
|
|
|
|
/* Although we could use the CMU API for most of the below handling, we */
|
|
/* would like this function to be as efficient as possible. */
|
|
|
|
/* CMU registers may be locked */
|
|
cmuLocked = CMU->LOCK & CMU_LOCK_LOCKKEY_LOCKED;
|
|
CMU_Unlock();
|
|
|
|
/* AUXHFRCO are automatically disabled (except if using debugger). */
|
|
/* HFRCO, USHFRCO and HFXO are automatically disabled. */
|
|
/* LFRCO/LFXO may be disabled by SW in EM3. */
|
|
/* Restore according to status prior to entering energy mode. */
|
|
oscEnCmd = 0;
|
|
oscEnCmd |= ((cmuStatus & CMU_STATUS_HFRCOENS) ? CMU_OSCENCMD_HFRCOEN : 0);
|
|
oscEnCmd |= ((cmuStatus & CMU_STATUS_AUXHFRCOENS) ? CMU_OSCENCMD_AUXHFRCOEN : 0);
|
|
oscEnCmd |= ((cmuStatus & CMU_STATUS_LFRCOENS) ? CMU_OSCENCMD_LFRCOEN : 0);
|
|
oscEnCmd |= ((cmuStatus & CMU_STATUS_HFXOENS) ? CMU_OSCENCMD_HFXOEN : 0);
|
|
oscEnCmd |= ((cmuStatus & CMU_STATUS_LFXOENS) ? CMU_OSCENCMD_LFXOEN : 0);
|
|
#if defined( _CMU_STATUS_USHFRCOENS_MASK )
|
|
oscEnCmd |= ((cmuStatus & CMU_STATUS_USHFRCOENS) ? CMU_OSCENCMD_USHFRCOEN : 0);
|
|
#endif
|
|
CMU->OSCENCMD = oscEnCmd;
|
|
|
|
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
/* Restore oscillator used for clocking core */
|
|
switch (cmuHfclkStatus & _CMU_HFCLKSTATUS_SELECTED_MASK)
|
|
{
|
|
case CMU_HFCLKSTATUS_SELECTED_LFRCO:
|
|
/* HFRCO could only be selected if the autostart HFXO feature is not
|
|
* enabled, otherwise the HFXO would be started and selected automatically.
|
|
* Note: this error hook helps catching erroneous oscillator configurations,
|
|
* when the AUTOSTARTSELEM0EM1 is set in CMU_HFXOCTRL. */
|
|
if (!(CMU->HFXOCTRL & CMU_HFXOCTRL_AUTOSTARTSELEM0EM1))
|
|
{
|
|
/* Wait for LFRCO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_LFRCORDY))
|
|
;
|
|
CMU->HFCLKSEL = CMU_HFCLKSEL_HF_LFRCO;
|
|
}
|
|
else
|
|
{
|
|
EFM_ASSERT(0);
|
|
}
|
|
break;
|
|
|
|
case CMU_HFCLKSTATUS_SELECTED_LFXO:
|
|
/* Wait for LFXO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_LFXORDY))
|
|
;
|
|
CMU->HFCLKSEL = CMU_HFCLKSEL_HF_LFXO;
|
|
break;
|
|
|
|
case CMU_HFCLKSTATUS_SELECTED_HFXO:
|
|
/* Wait for HFXO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_HFXORDY))
|
|
;
|
|
CMU->HFCLKSEL = CMU_HFCLKSEL_HF_HFXO;
|
|
break;
|
|
|
|
default: /* CMU_HFCLKSTATUS_SELECTED_HFRCO */
|
|
/* If core clock was HFRCO core clock, it is automatically restored to */
|
|
/* state prior to entering energy mode. No need for further action. */
|
|
break;
|
|
}
|
|
#else
|
|
switch (cmuStatus & (CMU_STATUS_HFRCOSEL
|
|
| CMU_STATUS_HFXOSEL
|
|
| CMU_STATUS_LFRCOSEL
|
|
#if defined( CMU_STATUS_USHFRCODIV2SEL )
|
|
| CMU_STATUS_USHFRCODIV2SEL
|
|
#endif
|
|
| CMU_STATUS_LFXOSEL))
|
|
{
|
|
case CMU_STATUS_LFRCOSEL:
|
|
/* Wait for LFRCO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_LFRCORDY))
|
|
;
|
|
CMU->CMD = CMU_CMD_HFCLKSEL_LFRCO;
|
|
break;
|
|
|
|
case CMU_STATUS_LFXOSEL:
|
|
/* Wait for LFXO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_LFXORDY))
|
|
;
|
|
CMU->CMD = CMU_CMD_HFCLKSEL_LFXO;
|
|
break;
|
|
|
|
case CMU_STATUS_HFXOSEL:
|
|
/* Wait for HFXO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_HFXORDY))
|
|
;
|
|
CMU->CMD = CMU_CMD_HFCLKSEL_HFXO;
|
|
break;
|
|
|
|
#if defined( CMU_STATUS_USHFRCODIV2SEL )
|
|
case CMU_STATUS_USHFRCODIV2SEL:
|
|
/* Wait for USHFRCO to stabilize */
|
|
while (!(CMU->STATUS & CMU_STATUS_USHFRCORDY))
|
|
;
|
|
CMU->CMD = _CMU_CMD_HFCLKSEL_USHFRCODIV2;
|
|
break;
|
|
#endif
|
|
|
|
default: /* CMU_STATUS_HFRCOSEL */
|
|
/* If core clock was HFRCO core clock, it is automatically restored to */
|
|
/* state prior to entering energy mode. No need for further action. */
|
|
break;
|
|
}
|
|
|
|
/* If HFRCO was disabled before entering Energy Mode, turn it off again */
|
|
/* as it is automatically enabled by wake up */
|
|
if ( ! (cmuStatus & CMU_STATUS_HFRCOENS) )
|
|
{
|
|
CMU->OSCENCMD = CMU_OSCENCMD_HFRCODIS;
|
|
}
|
|
#endif
|
|
/* Restore CMU register locking */
|
|
if (cmuLocked)
|
|
{
|
|
CMU_Lock();
|
|
}
|
|
}
|
|
|
|
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
/* Get enable conditions for errata EMU_E107 fix. */
|
|
__STATIC_INLINE bool getErrataFixEmuE107En(void)
|
|
{
|
|
/* SYSTEM_ChipRevisionGet could have been used here, but we would like a
|
|
* faster implementation in this case.
|
|
*/
|
|
uint16_t majorMinorRev;
|
|
|
|
/* CHIP MAJOR bit [3:0] */
|
|
majorMinorRev = ((ROMTABLE->PID0 & _ROMTABLE_PID0_REVMAJOR_MASK)
|
|
>> _ROMTABLE_PID0_REVMAJOR_SHIFT)
|
|
<< 8;
|
|
/* CHIP MINOR bit [7:4] */
|
|
majorMinorRev |= ((ROMTABLE->PID2 & _ROMTABLE_PID2_REVMINORMSB_MASK)
|
|
>> _ROMTABLE_PID2_REVMINORMSB_SHIFT)
|
|
<< 4;
|
|
/* CHIP MINOR bit [3:0] */
|
|
majorMinorRev |= (ROMTABLE->PID3 & _ROMTABLE_PID3_REVMINORLSB_MASK)
|
|
>> _ROMTABLE_PID3_REVMINORLSB_SHIFT;
|
|
|
|
#if defined( _EFM32_GECKO_FAMILY )
|
|
return (majorMinorRev <= 0x0103);
|
|
#elif defined( _EFM32_TINY_FAMILY )
|
|
return (majorMinorRev <= 0x0102);
|
|
#elif defined( _EFM32_GIANT_FAMILY )
|
|
return (majorMinorRev <= 0x0103) || (majorMinorRev == 0x0204);
|
|
#elif defined( _EFM32_WONDER_FAMILY )
|
|
return (majorMinorRev == 0x0100);
|
|
#else
|
|
/* Zero Gecko and future families are not affected by errata EMU_E107 */
|
|
return false;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
/* LP prepare / LN restore P/NFET count */
|
|
static void currentLimitersUpdate(void);
|
|
#define DCDC_LP_PFET_CNT 7
|
|
#define DCDC_LP_NFET_CNT 7
|
|
static void dcdcFetCntSet(bool lpModeSet)
|
|
{
|
|
uint32_t tmp;
|
|
static uint32_t emuDcdcMiscCtrlReg;
|
|
|
|
if (lpModeSet)
|
|
{
|
|
emuDcdcMiscCtrlReg = EMU->DCDCMISCCTRL;
|
|
tmp = EMU->DCDCMISCCTRL
|
|
& ~(_EMU_DCDCMISCCTRL_PFETCNT_MASK | _EMU_DCDCMISCCTRL_NFETCNT_MASK);
|
|
tmp |= (DCDC_LP_PFET_CNT << _EMU_DCDCMISCCTRL_PFETCNT_SHIFT)
|
|
| (DCDC_LP_NFET_CNT << _EMU_DCDCMISCCTRL_NFETCNT_SHIFT);
|
|
EMU->DCDCMISCCTRL = tmp;
|
|
currentLimitersUpdate();
|
|
}
|
|
else
|
|
{
|
|
EMU->DCDCMISCCTRL = emuDcdcMiscCtrlReg;
|
|
currentLimitersUpdate();
|
|
}
|
|
}
|
|
|
|
static void dcdcHsFixLnBlock(void)
|
|
{
|
|
#define EMU_DCDCSTATUS (* (volatile uint32_t *)(EMU_BASE + 0x7C))
|
|
if (errataFixDcdcHsState == errataFixDcdcHsTrimSet)
|
|
{
|
|
/* Wait for LNRUNNING */
|
|
if ((EMU->DCDCCTRL & _EMU_DCDCCTRL_DCDCMODE_MASK) == EMU_DCDCCTRL_DCDCMODE_LOWNOISE)
|
|
{
|
|
while (!(EMU_DCDCSTATUS & (0x1 << 16)));
|
|
}
|
|
errataFixDcdcHsState = errataFixDcdcHsLnWaitDone;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/** @endcond */
|
|
|
|
|
|
/*******************************************************************************
|
|
************************** GLOBAL FUNCTIONS *******************************
|
|
******************************************************************************/
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Enter energy mode 2 (EM2).
|
|
*
|
|
* @details
|
|
* When entering EM2, the high frequency clocks are disabled, ie HFXO, HFRCO
|
|
* and AUXHFRCO (for AUXHFRCO, see exception note below). When re-entering
|
|
* EM0, HFRCO is re-enabled and the core will be clocked by the configured
|
|
* HFRCO band. This ensures a quick wakeup from EM2.
|
|
*
|
|
* However, prior to entering EM2, the core may have been using another
|
|
* oscillator than HFRCO. The @p restore parameter gives the user the option
|
|
* to restore all HF oscillators according to state prior to entering EM2,
|
|
* as well as the clock used to clock the core. This restore procedure is
|
|
* handled by SW. However, since handled by SW, it will not be restored
|
|
* before completing the interrupt function(s) waking up the core!
|
|
*
|
|
* @note
|
|
* If restoring core clock to use the HFXO oscillator, which has been
|
|
* disabled during EM2 mode, this function will stall until the oscillator
|
|
* has stabilized. Stalling time can be reduced by adding interrupt
|
|
* support detecting stable oscillator, and an asynchronous switch to the
|
|
* original oscillator. See CMU documentation. Such a feature is however
|
|
* outside the scope of the implementation in this function.
|
|
* @par
|
|
* If HFXO is re-enabled by this function, and NOT used to clock the core,
|
|
* this function will not wait for HFXO to stabilize. This must be considered
|
|
* by the application if trying to use features relying on that oscillator
|
|
* upon return.
|
|
* @par
|
|
* If a debugger is attached, the AUXHFRCO will not be disabled if enabled
|
|
* upon entering EM2. It will thus remain enabled when returning to EM0
|
|
* regardless of the @p restore parameter.
|
|
* @par
|
|
* If HFXO autostart and select is enabled by using CMU_HFXOAutostartEnable(),
|
|
* the starting and selecting of the core clocks will be identical to the user
|
|
* independently of the value of the @p restore parameter when waking up on
|
|
* the wakeup sources corresponding to the autostart and select setting.
|
|
*
|
|
* @param[in] restore
|
|
* @li true - restore oscillators and clocks, see function details.
|
|
* @li false - do not restore oscillators and clocks, see function details.
|
|
* @par
|
|
* The @p restore option should only be used if all clock control is done
|
|
* via the CMU API.
|
|
******************************************************************************/
|
|
void EMU_EnterEM2(bool restore)
|
|
{
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
bool errataFixEmuE107En;
|
|
uint32_t nonWicIntEn[2];
|
|
#endif
|
|
|
|
/* Auto-update CMU status just in case before entering energy mode. */
|
|
/* This variable is normally kept up-to-date by the CMU API. */
|
|
cmuStatus = CMU->STATUS;
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
cmuHfclkStatus = (uint16_t)(CMU->HFCLKSTATUS);
|
|
#endif
|
|
|
|
/* Enter Cortex deep sleep mode */
|
|
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
|
|
|
|
/* Fix for errata EMU_E107 - store non-WIC interrupt enable flags.
|
|
Disable the enabled non-WIC interrupts. */
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
errataFixEmuE107En = getErrataFixEmuE107En();
|
|
if (errataFixEmuE107En)
|
|
{
|
|
nonWicIntEn[0] = NVIC->ISER[0] & NON_WIC_INT_MASK_0;
|
|
NVIC->ICER[0] = nonWicIntEn[0];
|
|
#if (NON_WIC_INT_MASK_1 != (~(0x0U)))
|
|
nonWicIntEn[1] = NVIC->ISER[1] & NON_WIC_INT_MASK_1;
|
|
NVIC->ICER[1] = nonWicIntEn[1];
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
dcdcFetCntSet(true);
|
|
dcdcHsFixLnBlock();
|
|
#endif
|
|
|
|
__WFI();
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
dcdcFetCntSet(false);
|
|
#endif
|
|
|
|
/* Fix for errata EMU_E107 - restore state of non-WIC interrupt enable flags. */
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
if (errataFixEmuE107En)
|
|
{
|
|
NVIC->ISER[0] = nonWicIntEn[0];
|
|
#if (NON_WIC_INT_MASK_1 != (~(0x0U)))
|
|
NVIC->ISER[1] = nonWicIntEn[1];
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Restore oscillators/clocks if specified */
|
|
if (restore)
|
|
{
|
|
emuRestore();
|
|
}
|
|
/* If not restoring, and original clock was not HFRCO, we have to */
|
|
/* update CMSIS core clock variable since core clock has changed */
|
|
/* to using HFRCO. */
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
else if ((cmuHfclkStatus & _CMU_HFCLKSTATUS_SELECTED_MASK)
|
|
!= CMU_HFCLKSTATUS_SELECTED_HFRCO)
|
|
#else
|
|
else if (!(cmuStatus & CMU_STATUS_HFRCOSEL))
|
|
#endif
|
|
{
|
|
SystemCoreClockUpdate();
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Enter energy mode 3 (EM3).
|
|
*
|
|
* @details
|
|
* When entering EM3, the high frequency clocks are disabled by HW, ie HFXO,
|
|
* HFRCO and AUXHFRCO (for AUXHFRCO, see exception note below). In addition,
|
|
* the low frequency clocks, ie LFXO and LFRCO are disabled by SW. When
|
|
* re-entering EM0, HFRCO is re-enabled and the core will be clocked by the
|
|
* configured HFRCO band. This ensures a quick wakeup from EM3.
|
|
*
|
|
* However, prior to entering EM3, the core may have been using another
|
|
* oscillator than HFRCO. The @p restore parameter gives the user the option
|
|
* to restore all HF/LF oscillators according to state prior to entering EM3,
|
|
* as well as the clock used to clock the core. This restore procedure is
|
|
* handled by SW. However, since handled by SW, it will not be restored
|
|
* before completing the interrupt function(s) waking up the core!
|
|
*
|
|
* @note
|
|
* If restoring core clock to use an oscillator other than HFRCO, this
|
|
* function will stall until the oscillator has stabilized. Stalling time
|
|
* can be reduced by adding interrupt support detecting stable oscillator,
|
|
* and an asynchronous switch to the original oscillator. See CMU
|
|
* documentation. Such a feature is however outside the scope of the
|
|
* implementation in this function.
|
|
* @par
|
|
* If HFXO/LFXO/LFRCO are re-enabled by this function, and NOT used to clock
|
|
* the core, this function will not wait for those oscillators to stabilize.
|
|
* This must be considered by the application if trying to use features
|
|
* relying on those oscillators upon return.
|
|
* @par
|
|
* If a debugger is attached, the AUXHFRCO will not be disabled if enabled
|
|
* upon entering EM3. It will thus remain enabled when returning to EM0
|
|
* regardless of the @p restore parameter.
|
|
*
|
|
* @param[in] restore
|
|
* @li true - restore oscillators and clocks, see function details.
|
|
* @li false - do not restore oscillators and clocks, see function details.
|
|
* @par
|
|
* The @p restore option should only be used if all clock control is done
|
|
* via the CMU API.
|
|
******************************************************************************/
|
|
void EMU_EnterEM3(bool restore)
|
|
{
|
|
uint32_t cmuLocked;
|
|
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
bool errataFixEmuE107En;
|
|
uint32_t nonWicIntEn[2];
|
|
#endif
|
|
|
|
/* Auto-update CMU status just in case before entering energy mode. */
|
|
/* This variable is normally kept up-to-date by the CMU API. */
|
|
cmuStatus = CMU->STATUS;
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
cmuHfclkStatus = (uint16_t)(CMU->HFCLKSTATUS);
|
|
#endif
|
|
|
|
/* CMU registers may be locked */
|
|
cmuLocked = CMU->LOCK & CMU_LOCK_LOCKKEY_LOCKED;
|
|
CMU_Unlock();
|
|
|
|
/* Disable LF oscillators */
|
|
CMU->OSCENCMD = CMU_OSCENCMD_LFXODIS | CMU_OSCENCMD_LFRCODIS;
|
|
|
|
/* Restore CMU register locking */
|
|
if (cmuLocked)
|
|
{
|
|
CMU_Lock();
|
|
}
|
|
|
|
/* Enter Cortex deep sleep mode */
|
|
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
|
|
|
|
/* Fix for errata EMU_E107 - store non-WIC interrupt enable flags.
|
|
Disable the enabled non-WIC interrupts. */
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
errataFixEmuE107En = getErrataFixEmuE107En();
|
|
if (errataFixEmuE107En)
|
|
{
|
|
nonWicIntEn[0] = NVIC->ISER[0] & NON_WIC_INT_MASK_0;
|
|
NVIC->ICER[0] = nonWicIntEn[0];
|
|
#if (NON_WIC_INT_MASK_1 != (~(0x0U)))
|
|
nonWicIntEn[1] = NVIC->ISER[1] & NON_WIC_INT_MASK_1;
|
|
NVIC->ICER[1] = nonWicIntEn[1];
|
|
#endif
|
|
|
|
}
|
|
#endif
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
dcdcFetCntSet(true);
|
|
dcdcHsFixLnBlock();
|
|
#endif
|
|
|
|
__WFI();
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
dcdcFetCntSet(false);
|
|
#endif
|
|
|
|
/* Fix for errata EMU_E107 - restore state of non-WIC interrupt enable flags. */
|
|
#if defined( ERRATA_FIX_EMU_E107_EN )
|
|
if (errataFixEmuE107En)
|
|
{
|
|
NVIC->ISER[0] = nonWicIntEn[0];
|
|
#if (NON_WIC_INT_MASK_1 != (~(0x0U)))
|
|
NVIC->ISER[1] = nonWicIntEn[1];
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Restore oscillators/clocks if specified */
|
|
if (restore)
|
|
{
|
|
emuRestore();
|
|
}
|
|
/* If not restoring, and original clock was not HFRCO, we have to */
|
|
/* update CMSIS core clock variable since core clock has changed */
|
|
/* to using HFRCO. */
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
else if ((cmuHfclkStatus & _CMU_HFCLKSTATUS_SELECTED_MASK)
|
|
!= CMU_HFCLKSTATUS_SELECTED_HFRCO)
|
|
#else
|
|
else if (!(cmuStatus & CMU_STATUS_HFRCOSEL))
|
|
#endif
|
|
{
|
|
SystemCoreClockUpdate();
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Enter energy mode 4 (EM4).
|
|
*
|
|
* @note
|
|
* Only a power on reset or external reset pin can wake the device from EM4.
|
|
******************************************************************************/
|
|
void EMU_EnterEM4(void)
|
|
{
|
|
int i;
|
|
|
|
#if defined( _EMU_EM4CTRL_EM4ENTRY_SHIFT )
|
|
uint32_t em4seq2 = (EMU->EM4CTRL & ~_EMU_EM4CTRL_EM4ENTRY_MASK)
|
|
| (2 << _EMU_EM4CTRL_EM4ENTRY_SHIFT);
|
|
uint32_t em4seq3 = (EMU->EM4CTRL & ~_EMU_EM4CTRL_EM4ENTRY_MASK)
|
|
| (3 << _EMU_EM4CTRL_EM4ENTRY_SHIFT);
|
|
#else
|
|
uint32_t em4seq2 = (EMU->CTRL & ~_EMU_CTRL_EM4CTRL_MASK)
|
|
| (2 << _EMU_CTRL_EM4CTRL_SHIFT);
|
|
uint32_t em4seq3 = (EMU->CTRL & ~_EMU_CTRL_EM4CTRL_MASK)
|
|
| (3 << _EMU_CTRL_EM4CTRL_SHIFT);
|
|
#endif
|
|
|
|
/* Make sure register write lock is disabled */
|
|
EMU_Unlock();
|
|
|
|
#if defined( ERRATA_FIX_EMU_E108_EN )
|
|
/* Fix for errata EMU_E108 - High Current Consumption on EM4 Entry. */
|
|
__disable_irq();
|
|
*(volatile uint32_t *)0x400C80E4 = 0;
|
|
#endif
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
dcdcFetCntSet(true);
|
|
dcdcHsFixLnBlock();
|
|
#endif
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
#if defined( _EMU_EM4CTRL_EM4ENTRY_SHIFT )
|
|
EMU->EM4CTRL = em4seq2;
|
|
EMU->EM4CTRL = em4seq3;
|
|
}
|
|
EMU->EM4CTRL = em4seq2;
|
|
#else
|
|
EMU->CTRL = em4seq2;
|
|
EMU->CTRL = em4seq3;
|
|
}
|
|
EMU->CTRL = em4seq2;
|
|
#endif
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Power down memory block.
|
|
*
|
|
* @param[in] blocks
|
|
* Specifies a logical OR of bits indicating memory blocks to power down.
|
|
* Bit 0 selects block 1, bit 1 selects block 2, etc. Memory block 0 cannot
|
|
* be disabled. Please refer to the reference manual for available
|
|
* memory blocks for a device.
|
|
*
|
|
* @note
|
|
* Only a reset can make the specified memory block(s) available for use
|
|
* after having been powered down. Function will be void for devices not
|
|
* supporting this feature.
|
|
******************************************************************************/
|
|
void EMU_MemPwrDown(uint32_t blocks)
|
|
{
|
|
#if defined( _EMU_MEMCTRL_POWERDOWN_MASK )
|
|
EFM_ASSERT(blocks <= (_EMU_MEMCTRL_POWERDOWN_MASK
|
|
>> _EMU_MEMCTRL_POWERDOWN_SHIFT));
|
|
EMU->MEMCTRL = blocks;
|
|
|
|
#elif defined( _EMU_MEMCTRL_RAMPOWERDOWN_MASK ) \
|
|
&& defined( _EMU_MEMCTRL_RAMHPOWERDOWN_MASK ) \
|
|
&& defined( _EMU_MEMCTRL_SEQRAMPOWERDOWN_MASK )
|
|
EFM_ASSERT((blocks & (_EMU_MEMCTRL_RAMPOWERDOWN_MASK
|
|
| _EMU_MEMCTRL_RAMHPOWERDOWN_MASK
|
|
| _EMU_MEMCTRL_SEQRAMPOWERDOWN_MASK))
|
|
== blocks);
|
|
EMU->MEMCTRL = blocks;
|
|
|
|
#elif defined( _EMU_MEMCTRL_RAMPOWERDOWN_MASK )
|
|
EFM_ASSERT((blocks & _EMU_MEMCTRL_RAMPOWERDOWN_MASK) == blocks);
|
|
EMU->MEMCTRL = blocks;
|
|
|
|
#elif defined( _EMU_RAM0CTRL_RAMPOWERDOWN_MASK )
|
|
EFM_ASSERT((blocks & _EMU_RAM0CTRL_RAMPOWERDOWN_MASK) == blocks);
|
|
EMU->RAM0CTRL = blocks;
|
|
|
|
#else
|
|
(void)blocks;
|
|
#endif
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Update EMU module with CMU oscillator selection/enable status.
|
|
*
|
|
* @details
|
|
* When entering EM2 and EM3, the HW may change the core clock oscillator
|
|
* used, as well as disabling some oscillators. The user may optionally select
|
|
* to restore the oscillators after waking up from EM2 and EM3 through the
|
|
* SW API.
|
|
*
|
|
* However, in order to support this in a safe way, the EMU module must
|
|
* be kept up-to-date on the actual selected configuration. The CMU
|
|
* module must keep the EMU module up-to-date.
|
|
*
|
|
* This function is mainly intended for internal use by the CMU module,
|
|
* but if the applications changes oscillator configurations without
|
|
* using the CMU API, this function can be used to keep the EMU module
|
|
* up-to-date.
|
|
******************************************************************************/
|
|
void EMU_UpdateOscConfig(void)
|
|
{
|
|
/* Fetch current configuration */
|
|
cmuStatus = CMU->STATUS;
|
|
#if defined( _CMU_HFCLKSTATUS_RESETVALUE )
|
|
cmuHfclkStatus = (uint16_t)(CMU->HFCLKSTATUS);
|
|
#endif
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Update EMU module with Energy Mode 2 and 3 configuration
|
|
*
|
|
* @param[in] em23Init
|
|
* Energy Mode 2 and 3 configuration structure
|
|
******************************************************************************/
|
|
void EMU_EM23Init(EMU_EM23Init_TypeDef *em23Init)
|
|
{
|
|
#if defined( _EMU_CTRL_EMVREG_MASK )
|
|
EMU->CTRL = em23Init->em23VregFullEn ? (EMU->CTRL | EMU_CTRL_EMVREG)
|
|
: (EMU->CTRL & ~EMU_CTRL_EMVREG);
|
|
#elif defined( _EMU_CTRL_EM23VREG_MASK )
|
|
EMU->CTRL = em23Init->em23VregFullEn ? (EMU->CTRL | EMU_CTRL_EM23VREG)
|
|
: (EMU->CTRL & ~EMU_CTRL_EM23VREG);
|
|
#else
|
|
(void)em23Init;
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined( _EMU_EM4CONF_MASK ) || defined( _EMU_EM4CTRL_MASK )
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Update EMU module with Energy Mode 4 configuration
|
|
*
|
|
* @param[in] em4Init
|
|
* Energy Mode 4 configuration structure
|
|
******************************************************************************/
|
|
void EMU_EM4Init(EMU_EM4Init_TypeDef *em4Init)
|
|
{
|
|
#if defined( _EMU_EM4CONF_MASK )
|
|
/* Init for platforms with EMU->EM4CONF register */
|
|
uint32_t em4conf = EMU->EM4CONF;
|
|
|
|
/* Clear fields that will be reconfigured */
|
|
em4conf &= ~(_EMU_EM4CONF_LOCKCONF_MASK
|
|
| _EMU_EM4CONF_OSC_MASK
|
|
| _EMU_EM4CONF_BURTCWU_MASK
|
|
| _EMU_EM4CONF_VREGEN_MASK);
|
|
|
|
/* Configure new settings */
|
|
em4conf |= (em4Init->lockConfig << _EMU_EM4CONF_LOCKCONF_SHIFT)
|
|
| (em4Init->osc)
|
|
| (em4Init->buRtcWakeup << _EMU_EM4CONF_BURTCWU_SHIFT)
|
|
| (em4Init->vreg << _EMU_EM4CONF_VREGEN_SHIFT);
|
|
|
|
/* Apply configuration. Note that lock can be set after this stage. */
|
|
EMU->EM4CONF = em4conf;
|
|
|
|
#elif defined( _EMU_EM4CTRL_MASK )
|
|
/* Init for platforms with EMU->EM4CTRL register */
|
|
|
|
uint32_t em4ctrl = EMU->EM4CTRL;
|
|
|
|
em4ctrl &= ~(_EMU_EM4CTRL_RETAINLFXO_MASK
|
|
| _EMU_EM4CTRL_RETAINLFRCO_MASK
|
|
| _EMU_EM4CTRL_RETAINULFRCO_MASK
|
|
| _EMU_EM4CTRL_EM4STATE_MASK
|
|
| _EMU_EM4CTRL_EM4IORETMODE_MASK);
|
|
|
|
em4ctrl |= (em4Init->retainLfxo ? EMU_EM4CTRL_RETAINLFXO : 0)
|
|
| (em4Init->retainLfrco ? EMU_EM4CTRL_RETAINLFRCO : 0)
|
|
| (em4Init->retainUlfrco ? EMU_EM4CTRL_RETAINULFRCO : 0)
|
|
| (em4Init->em4State ? EMU_EM4CTRL_EM4STATE_EM4H : 0)
|
|
| (em4Init->pinRetentionMode);
|
|
|
|
EMU->EM4CTRL = em4ctrl;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined( BU_PRESENT )
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Configure Backup Power Domain settings
|
|
*
|
|
* @param[in] bupdInit
|
|
* Backup power domain initialization structure
|
|
******************************************************************************/
|
|
void EMU_BUPDInit(EMU_BUPDInit_TypeDef *bupdInit)
|
|
{
|
|
uint32_t reg;
|
|
|
|
/* Set power connection configuration */
|
|
reg = EMU->PWRCONF & ~(_EMU_PWRCONF_PWRRES_MASK
|
|
| _EMU_PWRCONF_VOUTSTRONG_MASK
|
|
| _EMU_PWRCONF_VOUTMED_MASK
|
|
| _EMU_PWRCONF_VOUTWEAK_MASK);
|
|
|
|
reg |= bupdInit->resistor
|
|
| (bupdInit->voutStrong << _EMU_PWRCONF_VOUTSTRONG_SHIFT)
|
|
| (bupdInit->voutMed << _EMU_PWRCONF_VOUTMED_SHIFT)
|
|
| (bupdInit->voutWeak << _EMU_PWRCONF_VOUTWEAK_SHIFT);
|
|
|
|
EMU->PWRCONF = reg;
|
|
|
|
/* Set backup domain inactive mode configuration */
|
|
reg = EMU->BUINACT & ~(_EMU_BUINACT_PWRCON_MASK);
|
|
reg |= (bupdInit->inactivePower);
|
|
EMU->BUINACT = reg;
|
|
|
|
/* Set backup domain active mode configuration */
|
|
reg = EMU->BUACT & ~(_EMU_BUACT_PWRCON_MASK);
|
|
reg |= (bupdInit->activePower);
|
|
EMU->BUACT = reg;
|
|
|
|
/* Set power control configuration */
|
|
reg = EMU->BUCTRL & ~(_EMU_BUCTRL_PROBE_MASK
|
|
| _EMU_BUCTRL_BODCAL_MASK
|
|
| _EMU_BUCTRL_STATEN_MASK
|
|
| _EMU_BUCTRL_EN_MASK);
|
|
|
|
/* Note use of ->enable to both enable BUPD, use BU_VIN pin input and
|
|
release reset */
|
|
reg |= bupdInit->probe
|
|
| (bupdInit->bodCal << _EMU_BUCTRL_BODCAL_SHIFT)
|
|
| (bupdInit->statusPinEnable << _EMU_BUCTRL_STATEN_SHIFT)
|
|
| (bupdInit->enable << _EMU_BUCTRL_EN_SHIFT);
|
|
|
|
/* Enable configuration */
|
|
EMU->BUCTRL = reg;
|
|
|
|
/* If enable is true, enable BU_VIN input power pin, if not disable it */
|
|
EMU_BUPinEnable(bupdInit->enable);
|
|
|
|
/* If enable is true, release BU reset, if not keep reset asserted */
|
|
BUS_RegBitWrite(&(RMU->CTRL), _RMU_CTRL_BURSTEN_SHIFT, !bupdInit->enable);
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Configure Backup Power Domain BOD Threshold value
|
|
* @note
|
|
* These values are precalibrated
|
|
* @param[in] mode Active or Inactive mode
|
|
* @param[in] value
|
|
******************************************************************************/
|
|
void EMU_BUThresholdSet(EMU_BODMode_TypeDef mode, uint32_t value)
|
|
{
|
|
EFM_ASSERT(value<8);
|
|
EFM_ASSERT(value<=(_EMU_BUACT_BUEXTHRES_MASK>>_EMU_BUACT_BUEXTHRES_SHIFT));
|
|
|
|
switch(mode)
|
|
{
|
|
case emuBODMode_Active:
|
|
EMU->BUACT = (EMU->BUACT & ~_EMU_BUACT_BUEXTHRES_MASK)
|
|
| (value<<_EMU_BUACT_BUEXTHRES_SHIFT);
|
|
break;
|
|
case emuBODMode_Inactive:
|
|
EMU->BUINACT = (EMU->BUINACT & ~_EMU_BUINACT_BUENTHRES_MASK)
|
|
| (value<<_EMU_BUINACT_BUENTHRES_SHIFT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Configure Backup Power Domain BOD Threshold Range
|
|
* @note
|
|
* These values are precalibrated
|
|
* @param[in] mode Active or Inactive mode
|
|
* @param[in] value
|
|
******************************************************************************/
|
|
void EMU_BUThresRangeSet(EMU_BODMode_TypeDef mode, uint32_t value)
|
|
{
|
|
EFM_ASSERT(value < 4);
|
|
EFM_ASSERT(value<=(_EMU_BUACT_BUEXRANGE_MASK>>_EMU_BUACT_BUEXRANGE_SHIFT));
|
|
|
|
switch(mode)
|
|
{
|
|
case emuBODMode_Active:
|
|
EMU->BUACT = (EMU->BUACT & ~_EMU_BUACT_BUEXRANGE_MASK)
|
|
| (value<<_EMU_BUACT_BUEXRANGE_SHIFT);
|
|
break;
|
|
case emuBODMode_Inactive:
|
|
EMU->BUINACT = (EMU->BUINACT & ~_EMU_BUINACT_BUENRANGE_MASK)
|
|
| (value<<_EMU_BUINACT_BUENRANGE_SHIFT);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined( _EMU_DCDCCTRL_MASK )
|
|
|
|
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Load DCDC calibration constants from DI page. Const means calibration
|
|
* data that does not change depending on other configuration parameters.
|
|
*
|
|
* @return
|
|
* False if calibration registers are locked
|
|
******************************************************************************/
|
|
static bool ConstCalibrationLoad(void)
|
|
{
|
|
uint32_t val;
|
|
volatile uint32_t *reg;
|
|
|
|
/* DI calib data in flash */
|
|
volatile uint32_t* const diCal_EMU_DCDCLNFREQCTRL = (volatile uint32_t *)(0x0FE08038);
|
|
volatile uint32_t* const diCal_EMU_DCDCLNVCTRL = (volatile uint32_t *)(0x0FE08040);
|
|
volatile uint32_t* const diCal_EMU_DCDCLPCTRL = (volatile uint32_t *)(0x0FE08048);
|
|
volatile uint32_t* const diCal_EMU_DCDCLPVCTRL = (volatile uint32_t *)(0x0FE08050);
|
|
volatile uint32_t* const diCal_EMU_DCDCTRIM0 = (volatile uint32_t *)(0x0FE08058);
|
|
volatile uint32_t* const diCal_EMU_DCDCTRIM1 = (volatile uint32_t *)(0x0FE08060);
|
|
|
|
if (DEVINFO->DCDCLPVCTRL0 != UINT_MAX)
|
|
{
|
|
val = *(diCal_EMU_DCDCLNFREQCTRL + 1);
|
|
reg = (volatile uint32_t *)*diCal_EMU_DCDCLNFREQCTRL;
|
|
*reg = val;
|
|
|
|
val = *(diCal_EMU_DCDCLNVCTRL + 1);
|
|
reg = (volatile uint32_t *)*diCal_EMU_DCDCLNVCTRL;
|
|
*reg = val;
|
|
|
|
val = *(diCal_EMU_DCDCLPCTRL + 1);
|
|
reg = (volatile uint32_t *)*diCal_EMU_DCDCLPCTRL;
|
|
*reg = val;
|
|
|
|
val = *(diCal_EMU_DCDCLPVCTRL + 1);
|
|
reg = (volatile uint32_t *)*diCal_EMU_DCDCLPVCTRL;
|
|
*reg = val;
|
|
|
|
val = *(diCal_EMU_DCDCTRIM0 + 1);
|
|
reg = (volatile uint32_t *)*diCal_EMU_DCDCTRIM0;
|
|
*reg = val;
|
|
|
|
val = *(diCal_EMU_DCDCTRIM1 + 1);
|
|
reg = (volatile uint32_t *)*diCal_EMU_DCDCTRIM1;
|
|
*reg = val;
|
|
|
|
return true;
|
|
}
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Set recommended and validated current optimization and timing settings
|
|
*
|
|
******************************************************************************/
|
|
static void ValidatedConfigSet(void)
|
|
{
|
|
/* Disable LP mode hysterysis in the state machine control */
|
|
#define EMU_DCDCMISCCTRL_LPCMPHYSDIS (0x1UL << 1)
|
|
/* Comparator threshold on the high side */
|
|
#define EMU_DCDCMISCCTRL_LPCMPHYSHI (0x1UL << 2)
|
|
#define EMU_DCDCSMCTRL (* (volatile uint32_t *)(EMU_BASE + 0x44))
|
|
|
|
uint32_t dcdcTiming;
|
|
SYSTEM_PartFamily_TypeDef family;
|
|
SYSTEM_ChipRevision_TypeDef rev;
|
|
|
|
/* Enable duty cycling of the bias */
|
|
EMU->DCDCLPCTRL |= EMU_DCDCLPCTRL_LPVREFDUTYEN;
|
|
|
|
/* Set low-noise RCO for EFM32 and EFR32 */
|
|
#if defined( _EFR_DEVICE )
|
|
/* 7MHz is recommended for EFR32 */
|
|
EMU_DCDCLnRcoBandSet(EMU_DcdcLnRcoBand_7MHz);
|
|
#else
|
|
/* 3MHz is recommended for EFM32 */
|
|
EMU_DCDCLnRcoBandSet(EMU_DcdcLnRcoBand_3MHz);
|
|
#endif
|
|
|
|
EMU->DCDCTIMING &= ~_EMU_DCDCTIMING_DUTYSCALE_MASK;
|
|
EMU->DCDCMISCCTRL |= EMU_DCDCMISCCTRL_LPCMPHYSDIS
|
|
| EMU_DCDCMISCCTRL_LPCMPHYSHI;
|
|
|
|
family = SYSTEM_GetFamily();
|
|
SYSTEM_ChipRevisionGet(&rev);
|
|
if ((((family >= systemPartFamilyMighty1P)
|
|
&& (family <= systemPartFamilyFlex1V))
|
|
|| (family == systemPartFamilyEfm32Pearl1B)
|
|
|| (family == systemPartFamilyEfm32Jade1B))
|
|
&& ((rev.major == 1) && (rev.minor < 3))
|
|
&& (errataFixDcdcHsState == errataFixDcdcHsInit))
|
|
{
|
|
/* LPCMPWAITDIS = 1 */
|
|
EMU_DCDCSMCTRL |= 1;
|
|
|
|
dcdcTiming = EMU->DCDCTIMING;
|
|
dcdcTiming &= ~(_EMU_DCDCTIMING_LPINITWAIT_MASK
|
|
|_EMU_DCDCTIMING_LNWAIT_MASK
|
|
|_EMU_DCDCTIMING_BYPWAIT_MASK);
|
|
|
|
dcdcTiming |= ((180 << _EMU_DCDCTIMING_LPINITWAIT_SHIFT)
|
|
| (12 << _EMU_DCDCTIMING_LNWAIT_SHIFT)
|
|
| (180 << _EMU_DCDCTIMING_BYPWAIT_SHIFT));
|
|
EMU->DCDCTIMING = dcdcTiming;
|
|
|
|
errataFixDcdcHsState = errataFixDcdcHsTrimSet;
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Compute current limiters:
|
|
* LNCLIMILIMSEL: LN current limiter threshold
|
|
* LPCLIMILIMSEL: LP current limiter threshold
|
|
* DCDCZDETCTRL: zero detector limiter threshold
|
|
******************************************************************************/
|
|
static void currentLimitersUpdate(void)
|
|
{
|
|
uint32_t lncLimSel;
|
|
uint32_t zdetLimSel;
|
|
uint32_t pFetCnt;
|
|
uint16_t maxReverseCurrent_mA;
|
|
|
|
/* 80mA as recommended peak in Application Note AN0948.
|
|
The peak current is the average current plus 50% of the current ripple.
|
|
Hence, a 14mA average current is recommended in LP mode. Since LP PFETCNT is also
|
|
a constant, we get lpcLimImSel = 1. The following calculation is provided
|
|
for documentation only. */
|
|
const uint32_t lpcLim = (((14 + 40) + ((14 + 40) / 2))
|
|
/ (5 * (DCDC_LP_PFET_CNT + 1)))
|
|
- 1;
|
|
const uint32_t lpcLimSel = lpcLim << _EMU_DCDCMISCCTRL_LPCLIMILIMSEL_SHIFT;
|
|
|
|
/* Get enabled PFETs */
|
|
pFetCnt = (EMU->DCDCMISCCTRL & _EMU_DCDCMISCCTRL_PFETCNT_MASK)
|
|
>> _EMU_DCDCMISCCTRL_PFETCNT_SHIFT;
|
|
|
|
/* Compute LN current limiter threshold from nominal user input current and
|
|
LN PFETCNT as described in the register description for
|
|
EMU_DCDCMISCCTRL_LNCLIMILIMSEL. */
|
|
lncLimSel = (((dcdcMaxCurrent_mA + 40) + ((dcdcMaxCurrent_mA + 40) / 2))
|
|
/ (5 * (pFetCnt + 1)))
|
|
- 1;
|
|
|
|
/* Saturate the register field value */
|
|
lncLimSel = SL_MIN(lncLimSel,
|
|
_EMU_DCDCMISCCTRL_LNCLIMILIMSEL_MASK
|
|
>> _EMU_DCDCMISCCTRL_LNCLIMILIMSEL_SHIFT);
|
|
|
|
lncLimSel <<= _EMU_DCDCMISCCTRL_LNCLIMILIMSEL_SHIFT;
|
|
|
|
/* Check for overflow */
|
|
EFM_ASSERT((lncLimSel & ~_EMU_DCDCMISCCTRL_LNCLIMILIMSEL_MASK) == 0x0);
|
|
EFM_ASSERT((lpcLimSel & ~_EMU_DCDCMISCCTRL_LPCLIMILIMSEL_MASK) == 0x0);
|
|
|
|
EMU->DCDCMISCCTRL = (EMU->DCDCMISCCTRL & ~(_EMU_DCDCMISCCTRL_LNCLIMILIMSEL_MASK
|
|
| _EMU_DCDCMISCCTRL_LPCLIMILIMSEL_MASK))
|
|
| (lncLimSel | lpcLimSel);
|
|
|
|
|
|
/* Compute reverse current limit threshold for the zero detector from user input
|
|
maximum reverse current and LN PFETCNT as described in the register description
|
|
for EMU_DCDCZDETCTRL_ZDETILIMSEL. */
|
|
if (dcdcReverseCurrentControl >= 0)
|
|
{
|
|
/* If dcdcReverseCurrentControl < 0, then EMU_DCDCZDETCTRL_ZDETILIMSEL is "don't care" */
|
|
maxReverseCurrent_mA = (uint16_t)dcdcReverseCurrentControl;
|
|
|
|
zdetLimSel = ( ((maxReverseCurrent_mA + 40) + ((maxReverseCurrent_mA + 40) / 2))
|
|
/ ((2 * (pFetCnt + 1)) + ((pFetCnt + 1) / 2)) );
|
|
/* Saturate the register field value */
|
|
zdetLimSel = SL_MIN(zdetLimSel,
|
|
_EMU_DCDCZDETCTRL_ZDETILIMSEL_MASK
|
|
>> _EMU_DCDCZDETCTRL_ZDETILIMSEL_SHIFT);
|
|
|
|
zdetLimSel <<= _EMU_DCDCZDETCTRL_ZDETILIMSEL_SHIFT;
|
|
|
|
/* Check for overflow */
|
|
EFM_ASSERT((zdetLimSel & ~_EMU_DCDCZDETCTRL_ZDETILIMSEL_MASK) == 0x0);
|
|
|
|
EMU->DCDCZDETCTRL = (EMU->DCDCZDETCTRL & ~_EMU_DCDCZDETCTRL_ZDETILIMSEL_MASK)
|
|
| zdetLimSel;
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Set static variables that hold the user set maximum peak current
|
|
* and reverse current. Update limiters.
|
|
*
|
|
* @param[in] maxCurrent_mA
|
|
* Set the maximum peak current that the DCDC can draw from the power source.
|
|
* @param[in] reverseCurrentControl
|
|
* Reverse current control as defined by
|
|
* @ref EMU_DcdcLnReverseCurrentControl_TypeDef. Positive values have unit mA.
|
|
******************************************************************************/
|
|
static void userCurrentLimitsSet(uint32_t maxCurrent_mA,
|
|
EMU_DcdcLnReverseCurrentControl_TypeDef reverseCurrentControl)
|
|
{
|
|
dcdcMaxCurrent_mA = maxCurrent_mA;
|
|
dcdcReverseCurrentControl = reverseCurrentControl;
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Load EMU_DCDCLPCTRL_LPCMPHYSSEL depending on LP bias, LP feedback
|
|
* attenuation and DEVINFOREV.
|
|
*
|
|
* @param[in] attSet
|
|
* LP feedback attenuation.
|
|
* @param[in] lpCmpBias
|
|
* lpCmpBias selection
|
|
******************************************************************************/
|
|
static bool LpCmpHystCalibrationLoad(bool lpAttenuation, uint32_t lpCmpBias)
|
|
{
|
|
uint8_t devinfoRev;
|
|
uint32_t lpcmpHystSel;
|
|
|
|
/* Get calib data revision */
|
|
devinfoRev = SYSTEM_GetDevinfoRev();
|
|
|
|
/* Load LPATT indexed calibration data */
|
|
if (devinfoRev < 4)
|
|
{
|
|
lpcmpHystSel = DEVINFO->DCDCLPCMPHYSSEL0;
|
|
|
|
if (lpAttenuation)
|
|
{
|
|
lpcmpHystSel = (lpcmpHystSel & _DEVINFO_DCDCLPCMPHYSSEL0_LPCMPHYSSELLPATT1_MASK)
|
|
>> _DEVINFO_DCDCLPCMPHYSSEL0_LPCMPHYSSELLPATT1_SHIFT;
|
|
}
|
|
else
|
|
{
|
|
lpcmpHystSel = (lpcmpHystSel & _DEVINFO_DCDCLPCMPHYSSEL0_LPCMPHYSSELLPATT0_MASK)
|
|
>> _DEVINFO_DCDCLPCMPHYSSEL0_LPCMPHYSSELLPATT0_SHIFT;
|
|
}
|
|
}
|
|
/* devinfoRev >= 4
|
|
Load LPCMPBIAS indexed calibration data */
|
|
else
|
|
{
|
|
lpcmpHystSel = DEVINFO->DCDCLPCMPHYSSEL1;
|
|
switch (lpCmpBias)
|
|
{
|
|
case _EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS0:
|
|
lpcmpHystSel = (lpcmpHystSel & _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS0_MASK)
|
|
>> _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS0_SHIFT;
|
|
break;
|
|
|
|
case _EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS1:
|
|
lpcmpHystSel = (lpcmpHystSel & _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS1_MASK)
|
|
>> _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS1_SHIFT;
|
|
break;
|
|
|
|
case _EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS2:
|
|
lpcmpHystSel = (lpcmpHystSel & _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS2_MASK)
|
|
>> _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS2_SHIFT;
|
|
break;
|
|
|
|
case _EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS3:
|
|
lpcmpHystSel = (lpcmpHystSel & _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS3_MASK)
|
|
>> _DEVINFO_DCDCLPCMPHYSSEL1_LPCMPHYSSELLPCMPBIAS3_SHIFT;
|
|
break;
|
|
|
|
default:
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Make sure the sel value is within the field range. */
|
|
lpcmpHystSel <<= _EMU_DCDCLPCTRL_LPCMPHYSSEL_SHIFT;
|
|
if (lpcmpHystSel & ~_EMU_DCDCLPCTRL_LPCMPHYSSEL_MASK)
|
|
{
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
EMU->DCDCLPCTRL = (EMU->DCDCLPCTRL & ~_EMU_DCDCLPCTRL_LPCMPHYSSEL_MASK) | lpcmpHystSel;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/** @endcond */
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Set DCDC regulator operating mode
|
|
*
|
|
* @param[in] dcdcMode
|
|
* DCDC mode
|
|
******************************************************************************/
|
|
void EMU_DCDCModeSet(EMU_DcdcMode_TypeDef dcdcMode)
|
|
{
|
|
while(EMU->DCDCSYNC & EMU_DCDCSYNC_DCDCCTRLBUSY);
|
|
BUS_RegBitWrite(&EMU->DCDCCLIMCTRL, _EMU_DCDCCLIMCTRL_BYPLIMEN_SHIFT, dcdcMode == emuDcdcMode_Bypass ? 0 : 1);
|
|
EMU->DCDCCTRL = (EMU->DCDCCTRL & ~_EMU_DCDCCTRL_DCDCMODE_MASK) | dcdcMode;
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Configure DCDC regulator
|
|
*
|
|
* @note
|
|
* If the power circuit is configured for NODCDC as described in Section
|
|
* 11.3.4.3 of the Reference Manual, do not call this function. Instead call
|
|
* EMU_DCDCPowerOff().
|
|
*
|
|
* @param[in] dcdcInit
|
|
* DCDC initialization structure
|
|
*
|
|
* @return
|
|
* True if initialization parameters are valid
|
|
******************************************************************************/
|
|
bool EMU_DCDCInit(EMU_DCDCInit_TypeDef *dcdcInit)
|
|
{
|
|
uint32_t lpCmpBiasSel;
|
|
|
|
/* Set external power configuration. This enables writing to the other
|
|
DCDC registers. */
|
|
EMU->PWRCFG = dcdcInit->powerConfig;
|
|
|
|
/* EMU->PWRCFG is write-once and POR reset only. Check that
|
|
we could set the desired power configuration. */
|
|
if ((EMU->PWRCFG & _EMU_PWRCFG_PWRCFG_MASK) != dcdcInit->powerConfig)
|
|
{
|
|
/* If this assert triggers unexpectedly, please power cycle the
|
|
kit to reset the power configuration. */
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
|
|
/* Load DCDC calibration data from the DI page */
|
|
ConstCalibrationLoad();
|
|
|
|
/* Check current parameters */
|
|
EFM_ASSERT(dcdcInit->maxCurrent_mA <= 200);
|
|
EFM_ASSERT(dcdcInit->em01LoadCurrent_mA <= dcdcInit->maxCurrent_mA);
|
|
EFM_ASSERT(dcdcInit->reverseCurrentControl <= 200);
|
|
|
|
/* DCDC low-noise supports max 200mA */
|
|
if (dcdcInit->dcdcMode == emuDcdcMode_LowNoise)
|
|
{
|
|
EFM_ASSERT(dcdcInit->em01LoadCurrent_mA <= 200);
|
|
}
|
|
|
|
/* EM2/3/4 current above 1mA is not supported */
|
|
EFM_ASSERT(dcdcInit->em234LoadCurrent_uA <= 1000);
|
|
|
|
/* Decode LP comparator bias for EM2/3/4 */
|
|
if (dcdcInit->em234LoadCurrent_uA <= 10)
|
|
{
|
|
lpCmpBiasSel = EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS0;
|
|
}
|
|
else if (dcdcInit->em234LoadCurrent_uA <= 100)
|
|
{
|
|
lpCmpBiasSel = EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS1;
|
|
}
|
|
else
|
|
{
|
|
lpCmpBiasSel = EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS2;
|
|
}
|
|
|
|
/* ==== THESE NEXT STEPS ARE STRONGLY ORDER DEPENDENT ==== */
|
|
|
|
/* 1. Set DCDC low-power mode comparator bias selection and forced CCM
|
|
=> Updates DCDCMISCCTRL_LNFORCECCM */
|
|
EMU->DCDCMISCCTRL = (EMU->DCDCMISCCTRL & ~(_EMU_DCDCMISCCTRL_LPCMPBIAS_MASK
|
|
| _EMU_DCDCMISCCTRL_LNFORCECCM_MASK))
|
|
| ((uint32_t)lpCmpBiasSel
|
|
| (dcdcInit->reverseCurrentControl >= 0 ?
|
|
EMU_DCDCMISCCTRL_LNFORCECCM : 0));
|
|
|
|
/* 2. Set recommended and validated current optimization settings
|
|
=> Updates DCDCLNFREQCTRL_RCOBAND */
|
|
ValidatedConfigSet();
|
|
|
|
/* 3. Updated static current limits user data.
|
|
Limiters are updated in EMU_DCDCOptimizeSlice() */
|
|
userCurrentLimitsSet(dcdcInit->maxCurrent_mA,
|
|
dcdcInit->reverseCurrentControl);
|
|
|
|
/* 4. Optimize LN slice based on given user input load current
|
|
<= Depends on DCDCMISCCTRL_LNFORCECCM and DCDCLNFREQCTRL_RCOBAND
|
|
<= Depends on dcdcInit->maxCurrent_mA and dcdcInit->reverseCurrentControl
|
|
=> Updates DCDCMISCCTRL_P/NFETCNT
|
|
=> Updates DCDCMISCCTRL_LNCLIMILIMSEL and DCDCMISCCTRL_LPCLIMILIMSEL
|
|
=> Updates DCDCZDETCTRL_ZDETILIMSEL */
|
|
EMU_DCDCOptimizeSlice(dcdcInit->em01LoadCurrent_mA);
|
|
|
|
/* ======================================================= */
|
|
|
|
/* Set DCDC output voltage */
|
|
if (!EMU_DCDCOutputVoltageSet(dcdcInit->mVout, true, true))
|
|
{
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
|
|
/* Select analog peripheral power supply. This must be done before
|
|
DCDC mode is set. */
|
|
BUS_RegBitWrite(&EMU->PWRCTRL,
|
|
_EMU_PWRCTRL_ANASW_SHIFT,
|
|
dcdcInit->anaPeripheralPower ? 1 : 0);
|
|
|
|
/* Set EM0 DCDC operating mode. Output voltage set in
|
|
EMU_DCDCOutputVoltageSet() above takes effect if mode
|
|
is changed from bypass here. */
|
|
EMU_DCDCModeSet(dcdcInit->dcdcMode);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Set DCDC output voltage
|
|
*
|
|
* @param[in] mV
|
|
* Target DCDC output voltage in mV
|
|
*
|
|
* @return
|
|
* True if the mV parameter is valid
|
|
******************************************************************************/
|
|
bool EMU_DCDCOutputVoltageSet(uint32_t mV,
|
|
bool setLpVoltage,
|
|
bool setLnVoltage)
|
|
{
|
|
#if defined( _DEVINFO_DCDCLNVCTRL0_3V0LNATT1_MASK )
|
|
|
|
bool validOutVoltage;
|
|
uint8_t lnMode;
|
|
bool attSet;
|
|
uint32_t attMask;
|
|
uint32_t vrefLow = 0;
|
|
uint32_t vrefHigh = 0;
|
|
uint32_t vrefVal = 0;
|
|
uint32_t mVlow = 0;
|
|
uint32_t mVhigh = 0;
|
|
uint32_t vrefShift;
|
|
uint32_t lpcmpBias;
|
|
volatile uint32_t* ctrlReg;
|
|
|
|
/* Check that the set voltage is within valid range.
|
|
Voltages are obtained from the datasheet. */
|
|
validOutVoltage = false;
|
|
if ((EMU->PWRCFG & _EMU_PWRCFG_PWRCFG_MASK) == EMU_PWRCFG_PWRCFG_DCDCTODVDD)
|
|
{
|
|
validOutVoltage = ((mV >= PWRCFG_DCDCTODVDD_VMIN)
|
|
&& (mV <= PWRCFG_DCDCTODVDD_VMAX));
|
|
}
|
|
|
|
if (!validOutVoltage)
|
|
{
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
|
|
/* Populate both LP and LN registers, set control reg pointer and VREF shift. */
|
|
for (lnMode = 0; lnMode <= 1; lnMode++)
|
|
{
|
|
if (((lnMode == 0) && !setLpVoltage)
|
|
|| ((lnMode == 1) && !setLnVoltage))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
ctrlReg = (lnMode ? &EMU->DCDCLNVCTRL : &EMU->DCDCLPVCTRL);
|
|
vrefShift = (lnMode ? _EMU_DCDCLNVCTRL_LNVREF_SHIFT
|
|
: _EMU_DCDCLPVCTRL_LPVREF_SHIFT);
|
|
|
|
/* Set attenuation to use */
|
|
attSet = (mV > 1800);
|
|
/* Always set mVlow different from mVhigh to avoid division by zero */
|
|
/* further down. */
|
|
if (attSet)
|
|
{
|
|
mVlow = 1800;
|
|
mVhigh = 3000;
|
|
attMask = (lnMode ? EMU_DCDCLNVCTRL_LNATT : EMU_DCDCLPVCTRL_LPATT);
|
|
}
|
|
else
|
|
{
|
|
mVlow = 1200;
|
|
mVhigh = 1800;
|
|
attMask = 0;
|
|
}
|
|
|
|
/* Get 2-point calib data from DEVINFO, calculate trimming and set voltege */
|
|
if (lnMode)
|
|
{
|
|
/* Set low-noise DCDC output voltage tuning */
|
|
if (attSet)
|
|
{
|
|
vrefLow = DEVINFO->DCDCLNVCTRL0;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLNVCTRL0_3V0LNATT1_MASK)
|
|
>> _DEVINFO_DCDCLNVCTRL0_3V0LNATT1_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLNVCTRL0_1V8LNATT1_MASK)
|
|
>> _DEVINFO_DCDCLNVCTRL0_1V8LNATT1_SHIFT;
|
|
}
|
|
else
|
|
{
|
|
vrefLow = DEVINFO->DCDCLNVCTRL0;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLNVCTRL0_1V8LNATT0_MASK)
|
|
>> _DEVINFO_DCDCLNVCTRL0_1V8LNATT0_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLNVCTRL0_1V2LNATT0_MASK)
|
|
>> _DEVINFO_DCDCLNVCTRL0_1V2LNATT0_SHIFT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set low-power DCDC output voltage tuning */
|
|
|
|
/* Get LPCMPBIAS and make sure masks are not overlayed */
|
|
lpcmpBias = EMU->DCDCMISCCTRL & _EMU_DCDCMISCCTRL_LPCMPBIAS_MASK;
|
|
EFM_ASSERT(!(_EMU_DCDCMISCCTRL_LPCMPBIAS_MASK & attMask));
|
|
switch (attMask | lpcmpBias)
|
|
{
|
|
case EMU_DCDCLPVCTRL_LPATT | EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS0:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL2;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL2_3V0LPATT1LPCMPBIAS0_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL2_3V0LPATT1LPCMPBIAS0_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL2_1V8LPATT1LPCMPBIAS0_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL2_1V8LPATT1LPCMPBIAS0_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCLPVCTRL_LPATT | EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS1:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL2;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL2_3V0LPATT1LPCMPBIAS1_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL2_3V0LPATT1LPCMPBIAS1_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL2_1V8LPATT1LPCMPBIAS1_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL2_1V8LPATT1LPCMPBIAS1_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCLPVCTRL_LPATT | EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS2:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL3;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL3_3V0LPATT1LPCMPBIAS2_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL3_3V0LPATT1LPCMPBIAS2_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL3_1V8LPATT1LPCMPBIAS2_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL3_1V8LPATT1LPCMPBIAS2_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCLPVCTRL_LPATT | EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS3:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL3;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL3_3V0LPATT1LPCMPBIAS3_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL3_3V0LPATT1LPCMPBIAS3_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL3_1V8LPATT1LPCMPBIAS3_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL3_1V8LPATT1LPCMPBIAS3_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS0:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL0;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL0_1V8LPATT0LPCMPBIAS0_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL0_1V8LPATT0LPCMPBIAS0_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL0_1V2LPATT0LPCMPBIAS0_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL0_1V2LPATT0LPCMPBIAS0_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS1:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL0;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL0_1V8LPATT0LPCMPBIAS1_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL0_1V8LPATT0LPCMPBIAS1_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL0_1V2LPATT0LPCMPBIAS1_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL0_1V2LPATT0LPCMPBIAS1_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS2:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL1;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL1_1V8LPATT0LPCMPBIAS2_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL1_1V8LPATT0LPCMPBIAS2_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL1_1V2LPATT0LPCMPBIAS2_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL1_1V2LPATT0LPCMPBIAS2_SHIFT;
|
|
break;
|
|
|
|
case EMU_DCDCMISCCTRL_LPCMPBIAS_BIAS3:
|
|
vrefLow = DEVINFO->DCDCLPVCTRL1;
|
|
vrefHigh = (vrefLow & _DEVINFO_DCDCLPVCTRL1_1V8LPATT0LPCMPBIAS3_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL1_1V8LPATT0LPCMPBIAS3_SHIFT;
|
|
vrefLow = (vrefLow & _DEVINFO_DCDCLPVCTRL1_1V2LPATT0LPCMPBIAS3_MASK)
|
|
>> _DEVINFO_DCDCLPVCTRL1_1V2LPATT0LPCMPBIAS3_SHIFT;
|
|
break;
|
|
|
|
default:
|
|
EFM_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
/* Load LP comparator hysteresis calibration */
|
|
if(!(LpCmpHystCalibrationLoad(attSet, lpcmpBias >> _EMU_DCDCMISCCTRL_LPCMPBIAS_SHIFT)))
|
|
{
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
} /* Low-nise / low-power mode */
|
|
|
|
|
|
/* Check for valid 2-point trim values */
|
|
if (mVlow >= mVhigh)
|
|
{
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
|
|
/* Calculate and set voltage trim */
|
|
vrefVal = ((mV - mVlow) * (vrefHigh - vrefLow)) / (mVhigh - mVlow);
|
|
vrefVal += vrefLow;
|
|
|
|
/* Range check */
|
|
if ((vrefVal > vrefHigh) || (vrefVal < vrefLow))
|
|
{
|
|
EFM_ASSERT(false);
|
|
/* Return when assertions are disabled */
|
|
return false;
|
|
}
|
|
|
|
/* Update DCDCLNVCTRL/DCDCLPVCTRL */
|
|
*ctrlReg = (vrefVal << vrefShift) | attMask;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Optimize DCDC slice count based on the estimated average load current
|
|
* in EM0
|
|
*
|
|
* @param[in] em0LoadCurrent_mA
|
|
* Estimated average EM0 load current in mA.
|
|
******************************************************************************/
|
|
void EMU_DCDCOptimizeSlice(uint32_t em0LoadCurrent_mA)
|
|
{
|
|
uint32_t sliceCount = 0;
|
|
uint32_t rcoBand = (EMU->DCDCLNFREQCTRL & _EMU_DCDCLNFREQCTRL_RCOBAND_MASK)
|
|
>> _EMU_DCDCLNFREQCTRL_RCOBAND_SHIFT;
|
|
|
|
/* Set recommended slice count */
|
|
if ((EMU->DCDCMISCCTRL & _EMU_DCDCMISCCTRL_LNFORCECCM_MASK) && (rcoBand >= EMU_DcdcLnRcoBand_5MHz))
|
|
{
|
|
if (em0LoadCurrent_mA < 20)
|
|
{
|
|
sliceCount = 4;
|
|
}
|
|
else if ((em0LoadCurrent_mA >= 20) && (em0LoadCurrent_mA < 40))
|
|
{
|
|
sliceCount = 8;
|
|
}
|
|
else
|
|
{
|
|
sliceCount = 16;
|
|
}
|
|
}
|
|
else if ((!(EMU->DCDCMISCCTRL & _EMU_DCDCMISCCTRL_LNFORCECCM_MASK)) && (rcoBand <= EMU_DcdcLnRcoBand_4MHz))
|
|
{
|
|
if (em0LoadCurrent_mA < 10)
|
|
{
|
|
sliceCount = 4;
|
|
}
|
|
else if ((em0LoadCurrent_mA >= 10) && (em0LoadCurrent_mA < 20))
|
|
{
|
|
sliceCount = 8;
|
|
}
|
|
else
|
|
{
|
|
sliceCount = 16;
|
|
}
|
|
}
|
|
else if ((EMU->DCDCMISCCTRL & _EMU_DCDCMISCCTRL_LNFORCECCM_MASK) && (rcoBand <= EMU_DcdcLnRcoBand_4MHz))
|
|
{
|
|
if (em0LoadCurrent_mA < 40)
|
|
{
|
|
sliceCount = 8;
|
|
}
|
|
else
|
|
{
|
|
sliceCount = 16;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* This configuration is not recommended. EMU_DCDCInit() applies a recommended
|
|
configuration. */
|
|
EFM_ASSERT(false);
|
|
}
|
|
|
|
/* The selected slices are PSLICESEL + 1 */
|
|
sliceCount--;
|
|
|
|
/* Apply slice count to both N and P slice */
|
|
sliceCount = (sliceCount << _EMU_DCDCMISCCTRL_PFETCNT_SHIFT
|
|
| sliceCount << _EMU_DCDCMISCCTRL_NFETCNT_SHIFT);
|
|
EMU->DCDCMISCCTRL = (EMU->DCDCMISCCTRL & ~(_EMU_DCDCMISCCTRL_PFETCNT_MASK
|
|
| _EMU_DCDCMISCCTRL_NFETCNT_MASK))
|
|
| sliceCount;
|
|
|
|
/* Update current limiters */
|
|
currentLimitersUpdate();
|
|
}
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Set DCDC Low-noise RCO band.
|
|
*
|
|
* @param[in] band
|
|
* RCO band to set.
|
|
******************************************************************************/
|
|
void EMU_DCDCLnRcoBandSet(EMU_DcdcLnRcoBand_TypeDef band)
|
|
{
|
|
uint32_t forcedCcm;
|
|
forcedCcm = BUS_RegBitRead(&EMU->DCDCMISCCTRL, _EMU_DCDCMISCCTRL_LNFORCECCM_SHIFT);
|
|
|
|
/* DCM mode supports up to 4MHz LN RCO. */
|
|
EFM_ASSERT((!forcedCcm && band <= EMU_DcdcLnRcoBand_4MHz) || forcedCcm);
|
|
|
|
EMU->DCDCLNFREQCTRL = (EMU->DCDCLNFREQCTRL & ~_EMU_DCDCLNFREQCTRL_RCOBAND_MASK)
|
|
| (band << _EMU_DCDCLNFREQCTRL_RCOBAND_SHIFT);
|
|
}
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Power off the DCDC regulator.
|
|
*
|
|
* @details
|
|
* This function powers off the DCDC controller. This function should only be
|
|
* used if the external power circuit is wired for no DCDC. If the external power
|
|
* circuit is wired for DCDC usage, then use EMU_DCDCInit() and set the
|
|
* DCDC in bypass mode to disable DCDC.
|
|
*
|
|
* @return
|
|
* Return false if the DCDC could not be disabled.
|
|
******************************************************************************/
|
|
bool EMU_DCDCPowerOff(void)
|
|
{
|
|
bool dcdcModeSet;
|
|
|
|
/* Set power configuration to hard bypass */
|
|
EMU->PWRCFG = 0xF;
|
|
|
|
/* Set DCDC to OFF and disable LP in EM2/3/4. Verify that the required
|
|
mode could be set. */
|
|
while(EMU->DCDCSYNC & EMU_DCDCSYNC_DCDCCTRLBUSY);
|
|
EMU->DCDCCTRL = EMU_DCDCCTRL_DCDCMODE_OFF;
|
|
|
|
dcdcModeSet = (EMU->PWRCFG == 0xF) && (EMU->DCDCCTRL == EMU_DCDCCTRL_DCDCMODE_OFF);
|
|
EFM_ASSERT(dcdcModeSet);
|
|
|
|
return dcdcModeSet;
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined( EMU_STATUS_VMONRDY )
|
|
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
|
|
__STATIC_INLINE uint32_t vmonMilliVoltToCoarseThreshold(int mV)
|
|
{
|
|
return (mV - 1200) / 200;
|
|
}
|
|
|
|
__STATIC_INLINE uint32_t vmonMilliVoltToFineThreshold(int mV, uint32_t coarseThreshold)
|
|
{
|
|
return (mV - 1200 - (coarseThreshold * 200)) / 20;
|
|
}
|
|
/** @endcond */
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Initialize VMON channel.
|
|
*
|
|
* @details
|
|
* Initialize a VMON channel without hysteresis. If the channel supports
|
|
* separate rise and fall triggers, both thresholds will be set to the same
|
|
* value.
|
|
*
|
|
* @param[in] vmonInit
|
|
* VMON initialization struct
|
|
******************************************************************************/
|
|
void EMU_VmonInit(EMU_VmonInit_TypeDef *vmonInit)
|
|
{
|
|
uint32_t thresholdCoarse, thresholdFine;
|
|
EFM_ASSERT((vmonInit->threshold >= 1200) && (vmonInit->threshold <= 3980));
|
|
|
|
thresholdCoarse = vmonMilliVoltToCoarseThreshold(vmonInit->threshold);
|
|
thresholdFine = vmonMilliVoltToFineThreshold(vmonInit->threshold, thresholdCoarse);
|
|
|
|
switch(vmonInit->channel)
|
|
{
|
|
case emuVmonChannel_AVDD:
|
|
EMU->VMONAVDDCTRL = (thresholdCoarse << _EMU_VMONAVDDCTRL_RISETHRESCOARSE_SHIFT)
|
|
| (thresholdFine << _EMU_VMONAVDDCTRL_RISETHRESFINE_SHIFT)
|
|
| (thresholdCoarse << _EMU_VMONAVDDCTRL_FALLTHRESCOARSE_SHIFT)
|
|
| (thresholdFine << _EMU_VMONAVDDCTRL_FALLTHRESFINE_SHIFT)
|
|
| (vmonInit->riseWakeup ? EMU_VMONAVDDCTRL_RISEWU : 0)
|
|
| (vmonInit->fallWakeup ? EMU_VMONAVDDCTRL_FALLWU : 0)
|
|
| (vmonInit->enable ? EMU_VMONAVDDCTRL_EN : 0);
|
|
break;
|
|
case emuVmonChannel_ALTAVDD:
|
|
EMU->VMONALTAVDDCTRL = (thresholdCoarse << _EMU_VMONALTAVDDCTRL_THRESCOARSE_SHIFT)
|
|
| (thresholdFine << _EMU_VMONALTAVDDCTRL_THRESFINE_SHIFT)
|
|
| (vmonInit->riseWakeup ? EMU_VMONALTAVDDCTRL_RISEWU : 0)
|
|
| (vmonInit->fallWakeup ? EMU_VMONALTAVDDCTRL_FALLWU : 0)
|
|
| (vmonInit->enable ? EMU_VMONALTAVDDCTRL_EN : 0);
|
|
break;
|
|
case emuVmonChannel_DVDD:
|
|
EMU->VMONDVDDCTRL = (thresholdCoarse << _EMU_VMONDVDDCTRL_THRESCOARSE_SHIFT)
|
|
| (thresholdFine << _EMU_VMONDVDDCTRL_THRESFINE_SHIFT)
|
|
| (vmonInit->riseWakeup ? EMU_VMONDVDDCTRL_RISEWU : 0)
|
|
| (vmonInit->fallWakeup ? EMU_VMONDVDDCTRL_FALLWU : 0)
|
|
| (vmonInit->enable ? EMU_VMONDVDDCTRL_EN : 0);
|
|
break;
|
|
case emuVmonChannel_IOVDD0:
|
|
EMU->VMONIO0CTRL = (thresholdCoarse << _EMU_VMONIO0CTRL_THRESCOARSE_SHIFT)
|
|
| (thresholdFine << _EMU_VMONIO0CTRL_THRESFINE_SHIFT)
|
|
| (vmonInit->retDisable ? EMU_VMONIO0CTRL_RETDIS : 0)
|
|
| (vmonInit->riseWakeup ? EMU_VMONIO0CTRL_RISEWU : 0)
|
|
| (vmonInit->fallWakeup ? EMU_VMONIO0CTRL_FALLWU : 0)
|
|
| (vmonInit->enable ? EMU_VMONIO0CTRL_EN : 0);
|
|
break;
|
|
default:
|
|
EFM_ASSERT(false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Initialize VMON channel with hysteresis (separate rise and fall triggers).
|
|
*
|
|
* @details
|
|
* Initialize a VMON channel which supports hysteresis. The AVDD channel is
|
|
* the only channel to support separate rise and fall triggers.
|
|
*
|
|
* @param[in] vmonInit
|
|
* VMON Hysteresis initialization struct
|
|
******************************************************************************/
|
|
void EMU_VmonHystInit(EMU_VmonHystInit_TypeDef *vmonInit)
|
|
{
|
|
uint32_t riseThresholdCoarse, riseThresholdFine, fallThresholdCoarse, fallThresholdFine;
|
|
/* VMON supports voltages between 1200 mV and 3980 mV (inclusive) in 20 mV increments */
|
|
EFM_ASSERT((vmonInit->riseThreshold >= 1200) && (vmonInit->riseThreshold < 4000));
|
|
EFM_ASSERT((vmonInit->fallThreshold >= 1200) && (vmonInit->fallThreshold < 4000));
|
|
/* Fall threshold has to be lower than rise threshold */
|
|
EFM_ASSERT(vmonInit->fallThreshold <= vmonInit->riseThreshold);
|
|
|
|
riseThresholdCoarse = vmonMilliVoltToCoarseThreshold(vmonInit->riseThreshold);
|
|
riseThresholdFine = vmonMilliVoltToFineThreshold(vmonInit->riseThreshold, riseThresholdCoarse);
|
|
fallThresholdCoarse = vmonMilliVoltToCoarseThreshold(vmonInit->fallThreshold);
|
|
fallThresholdFine = vmonMilliVoltToFineThreshold(vmonInit->fallThreshold, fallThresholdCoarse);
|
|
|
|
switch(vmonInit->channel)
|
|
{
|
|
case emuVmonChannel_AVDD:
|
|
EMU->VMONAVDDCTRL = (riseThresholdCoarse << _EMU_VMONAVDDCTRL_RISETHRESCOARSE_SHIFT)
|
|
| (riseThresholdFine << _EMU_VMONAVDDCTRL_RISETHRESFINE_SHIFT)
|
|
| (fallThresholdCoarse << _EMU_VMONAVDDCTRL_FALLTHRESCOARSE_SHIFT)
|
|
| (fallThresholdFine << _EMU_VMONAVDDCTRL_FALLTHRESFINE_SHIFT)
|
|
| (vmonInit->riseWakeup ? EMU_VMONAVDDCTRL_RISEWU : 0)
|
|
| (vmonInit->fallWakeup ? EMU_VMONAVDDCTRL_FALLWU : 0)
|
|
| (vmonInit->enable ? EMU_VMONAVDDCTRL_EN : 0);
|
|
break;
|
|
default:
|
|
EFM_ASSERT(false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Enable or disable a VMON channel
|
|
*
|
|
* @param[in] channel
|
|
* VMON channel to enable/disable
|
|
*
|
|
* @param[in] enable
|
|
* Whether to enable or disable
|
|
******************************************************************************/
|
|
void EMU_VmonEnable(EMU_VmonChannel_TypeDef channel, bool enable)
|
|
{
|
|
uint32_t volatile * reg;
|
|
uint32_t bit;
|
|
|
|
switch(channel)
|
|
{
|
|
case emuVmonChannel_AVDD:
|
|
reg = &(EMU->VMONAVDDCTRL);
|
|
bit = _EMU_VMONAVDDCTRL_EN_SHIFT;
|
|
break;
|
|
case emuVmonChannel_ALTAVDD:
|
|
reg = &(EMU->VMONALTAVDDCTRL);
|
|
bit = _EMU_VMONALTAVDDCTRL_EN_SHIFT;
|
|
break;
|
|
case emuVmonChannel_DVDD:
|
|
reg = &(EMU->VMONDVDDCTRL);
|
|
bit = _EMU_VMONDVDDCTRL_EN_SHIFT;
|
|
break;
|
|
case emuVmonChannel_IOVDD0:
|
|
reg = &(EMU->VMONIO0CTRL);
|
|
bit = _EMU_VMONIO0CTRL_EN_SHIFT;
|
|
break;
|
|
default:
|
|
EFM_ASSERT(false);
|
|
return;
|
|
}
|
|
|
|
BUS_RegBitWrite(reg, bit, enable);
|
|
}
|
|
|
|
/***************************************************************************//**
|
|
* @brief
|
|
* Get the status of a voltage monitor channel.
|
|
*
|
|
* @param[in] channel
|
|
* VMON channel to get status for
|
|
*
|
|
* @return
|
|
* Status of the selected VMON channel. True if channel is triggered.
|
|
******************************************************************************/
|
|
bool EMU_VmonChannelStatusGet(EMU_VmonChannel_TypeDef channel)
|
|
{
|
|
uint32_t bit;
|
|
switch(channel)
|
|
{
|
|
case emuVmonChannel_AVDD:
|
|
bit = _EMU_STATUS_VMONAVDD_SHIFT;
|
|
break;
|
|
case emuVmonChannel_ALTAVDD:
|
|
bit = _EMU_STATUS_VMONALTAVDD_SHIFT;
|
|
break;
|
|
case emuVmonChannel_DVDD:
|
|
bit = _EMU_STATUS_VMONDVDD_SHIFT;
|
|
break;
|
|
case emuVmonChannel_IOVDD0:
|
|
bit = _EMU_STATUS_VMONIO0_SHIFT;
|
|
break;
|
|
default:
|
|
EFM_ASSERT(false);
|
|
bit = 0;
|
|
}
|
|
|
|
return BUS_RegBitRead(&EMU->STATUS, bit);
|
|
}
|
|
#endif /* EMU_STATUS_VMONRDY */
|
|
|
|
/** @} (end addtogroup EMU) */
|
|
/** @} (end addtogroup emlib) */
|
|
#endif /* __EM_EMU_H */
|