qpcpp/ports/uc-os2/qf_port.cpp

338 lines
12 KiB
C++

//============================================================================
// QP/C++ Real-Time Embedded Framework (RTEF)
// Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved.
//
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
//
// This software is dual-licensed under the terms of the open source GNU
// General Public License version 3 (or any later version), or alternatively,
// under the terms of one of the closed source Quantum Leaps commercial
// licenses.
//
// The terms of the open source GNU General Public License version 3
// can be found at: <www.gnu.org/licenses/gpl-3.0>
//
// The terms of the closed source Quantum Leaps commercial licenses
// can be found at: <www.state-machine.com/licensing>
//
// Redistributions in source code must retain this top-level comment block.
// Plagiarizing this software to sidestep the license obligations is illegal.
//
// Contact information:
// <www.state-machine.com>
// <info@state-machine.com>
//============================================================================
//! @date Last updated on: 2023-12-04
//! @version Last updated for: @ref qpcpp_7_3_1
//!
//! @file
//! @brief QF/C++ port to uC-OS2 RTOS, generic C++11 compiler
#define QP_IMPL // this is QP implementation
#include "qp_port.hpp" // QP port
#include "qp_pkg.hpp" // QP package-scope interface
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.hpp" // QS port
#include "qs_pkg.hpp" // QS package-scope internal interface
#else
#include "qs_dummy.hpp" // disable the QS software tracing
#endif // Q_SPY
//============================================================================
namespace { // anonymous namespace with local definitions
Q_DEFINE_THIS_MODULE("qf_port")
//............................................................................
static void task_function(void *pdata); // prototype
static void task_function(void *pdata) { // uC-OS2 task signature
QP::QActive::evtLoop_(reinterpret_cast<QP::QActive *>(pdata));
}
} // anonymous namespace
// namespace QP ==============================================================
namespace QP {
//............................................................................
void QF::init() {
OSInit(); // initialize uC-OS2
}
//............................................................................
int QF::run() {
onStartup(); // QF callback to configure and start interrupts
// produce the QS_QF_RUN trace record
QS_CRIT_STAT
QS_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_RUN, 0U)
QS_END_PRE_()
QS_CRIT_EXIT();
OSStart(); // start uC-OS2 multitasking, should never return
return 0; // this unreachable return keeps the compiler happy
}
//............................................................................
void QF::stop() {
onCleanup(); // cleanup callback
}
// thread for active objects -------------------------------------------------
void QActive::evtLoop_(QActive *act) {
for (;;) { // for-ever
QEvt const *e = act->get_(); // wait for event
act->dispatch(e, act->m_prio); // dispatch to the AO's state machine
QF::gc(e); // check if the event is garbage, and collect it if so
}
//act->unregister_(); // remove this object from QF
}
//............................................................................
void QActive::start(QPrioSpec const prioSpec,
QEvt const * * const qSto, std::uint_fast16_t const qLen,
void * const stkSto, std::uint_fast16_t const stkSize,
void const * const par)
{
// task name to be passed to OSTaskCreateExt()
void * const task_name = static_cast<void *>(m_eQueue);
// create uC-OS2 queue and make sure it was created correctly
m_eQueue = OSQCreate((void **)qSto, qLen);
QF_CRIT_STAT
QF_CRIT_ENTRY();
// the uC-OS2 queue must be created correctly
Q_ASSERT_INCRIT(210, m_eQueue != nullptr);
QF_CRIT_EXIT();
m_prio = static_cast<std::uint8_t>(prioSpec & 0xFFU); // QF-priority
m_pthre = 0U; // preemption-threshold (not used)
register_(); // make QF aware of this AO
// top-most initial tran. (virtual call)
init(par, m_prio);
QS_FLUSH(); // flush the trace buffer to the host
// map from QP to uC-OS2 priority
// The uC-OS2 priority of the AO thread can be specificed in two ways:
//
// 1. Implictily based on the AO's priority (uC-OS2 uses the reverse
// priority numbering scheme than QP). This option is chosen when
// the higher-byte of the prioSpec parameter is set to zero.
//
// 2. Explicitly as the higher-byte of the prioSpec parameter.
// This option is chosen when the prioSpec parameter is not-zero.
// For example, Q_PRIO(10U, 5U) will explicitly specify AO priority
// as 10 and FreeRTOS priority as 5.
//
// NOTE: The explicit uC-OS2 priority is NOT sanity-checked,
// so it is the responsibility of the application to ensure that
// it is consistent witht the AO's priority. An example of
// inconsistent setting would be assigning uC-OS2 priorities that
// would result in a different relative priritization of AO's threads
// than indicated by the AO priorities assigned.
//
INT8U ucos2_prio = (prioSpec >> 8U);
if (ucos2_prio == 0U) {
ucos2_prio = (INT8U)(OS_LOWEST_PRIO - m_prio);
}
// create AO's task...
//
// NOTE: The call to uC-OS2 API OSTaskCreateExt() assumes that the
// pointer to the top-of-stack (ptos) is at the end of the provided
// stack memory. This is correct only for CPUs with downward-growing
// stack, but must be changed for CPUs with upward-growing stack
INT8U const err = OSTaskCreateExt(
&task_function, // the task function
this, // the 'pdata' parameter
#if OS_STK_GROWTH
&static_cast<OS_STK *>(stkSto)[(stkSize/sizeof(OS_STK)) - 1], // ptos
#else
static_cast<OS_STK *>(stkSto), // ptos
#endif
ucos2_prio, // uC-OS2 task priority
static_cast<INT16U>(m_prio), // the unique AO priority as task ID
#if OS_STK_GROWTH
static_cast<OS_STK *>(stkSto), // pbos
#else
&static_cast<OS_STK *>(stkSto)[(stkSize/sizeof(OS_STK)) - 1], // pbos
#endif
static_cast<INT32U>(stkSize/sizeof(OS_STK)), // size in OS_STK units
task_name, // pext
static_cast<INT16U>(m_thread)); // task options, see NOTE1
QF_CRIT_ENTRY();
// uC-OS2 task must be created correctly
Q_ASSERT_INCRIT(220, err == OS_ERR_NONE);
QF_CRIT_EXIT();
}
//............................................................................
// NOTE: This function must be called BEFORE starting an active object
void QActive::setAttr(std::uint32_t attr1, void const *attr2) {
QF_CRIT_STAT
QF_CRIT_ENTRY();
switch (attr1) {
case TASK_NAME_ATTR:
// this function must be called before QACTIVE_START(),
// which implies that m_eQueue must not be used yet;
Q_ASSERT_INCRIT(300, m_eQueue == nullptr);
// temporarily store the name, cast 'const' away
m_eQueue = static_cast<OS_EVENT *>(
const_cast<void *>(attr2));
break;
// ...
default:
m_thread = attr1;
break;
}
QF_CRIT_EXIT();
}
//............................................................................
bool QActive::post_(QEvt const * const e, std::uint_fast16_t const margin,
void const * const sender) noexcept
{
QF_CRIT_STAT
QF_CRIT_ENTRY();
std::uint_fast16_t const nFree = static_cast<std::uint_fast16_t>(
reinterpret_cast<OS_Q_DATA *>(m_eQueue)->OSQSize
- reinterpret_cast<OS_Q_DATA *>(m_eQueue)->OSNMsgs);
bool status;
if (margin == QF::NO_MARGIN) {
if (nFree > 0U) {
status = true; // can post
}
else {
status = false; // cannot post
Q_ERROR_INCRIT(710); // must be able to post the event
}
}
else if (nFree > static_cast<QEQueueCtr>(margin)) {
status = true; // can post
}
else {
status = false; // cannot post
}
if (status) { // can post the event?
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolId_(), e->refCtr_);// pool-Id & ref-Count
QS_EQC_PRE_(nFree); // # free entries
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
if (e->getPoolId_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
INT8U err = OSQPost(m_eQueue, const_cast<QEvt *>(e));
QF_CRIT_ENTRY();
// posting to uC-OS2 message queue must succeed, see NOTE3
Q_ASSERT_INCRIT(720, err == OS_ERR_NONE);
QF_CRIT_EXIT();
}
else {
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_ATTEMPT, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolId_(), e->refCtr_);// pool-Id & ref-Count
QS_EQC_PRE_(nFree); // # free entries
QS_EQC_PRE_(margin); // margin requested
QS_END_PRE_()
QF_CRIT_EXIT();
}
return status;
}
//............................................................................
void QActive::postLIFO(QEvt const * const e) noexcept {
QF_CRIT_STAT
QF_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_LIFO, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->getPoolId_(), e->refCtr_); // pool-Id & ref-Count
// # free entries
QS_EQC_PRE_(reinterpret_cast<OS_Q *>(m_eQueue)->OSQSize
- reinterpret_cast<OS_Q *>(m_eQueue)->OSQEntries);
QS_EQC_PRE_(0U); // min # free (unknown)
QS_END_PRE_()
if (e->getPoolId_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
INT8U err = OSQPostFront(m_eQueue, const_cast<QEvt *>(e));
QF_CRIT_ENTRY();
// posting to uC-OS2 message queue must succeed, see NOTE3
Q_ASSERT_INCRIT(810, err == OS_ERR_NONE);
QF_CRIT_EXIT();
}
//............................................................................
QEvt const *QActive::get_(void) noexcept {
INT8U err;
QEvt const *e = static_cast<QEvt const *>(
OSQPend(static_cast<OS_EVENT *>(m_eQueue), 0U, &err));
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(910, err == OS_ERR_NONE);
QS_BEGIN_PRE_(QS_QF_ACTIVE_GET, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->getPoolId_(), e->refCtr_); // pool-Id & ref-Count
// # free entries
QS_EQC_PRE_(reinterpret_cast<OS_Q *>(m_eQueue)->OSQSize
- reinterpret_cast<OS_Q *>(m_eQueue)->OSQEntries);
QS_END_PRE_()
QF_CRIT_EXIT();
return e;
}
} // namespace QP
//============================================================================
// NOTE0:
// The QF_onStartup() should enter the critical section before configuring
// and starting interrupts and it should NOT exit the critical section.
// Thus the interrupts cannot fire until uC-OS2 starts multitasking
// in OSStart(). This is to prevent a (narrow) time window in which interrupts
// could make some tasks ready to run, but the OS would not be ready yet
// to perform context switch.
//
// NOTE1:
// The member QActive.thread is set to the uC-OS2 task options in the
// function QF_setUCosTaskAttr(), which must be called **before**
// QActive::start().
//
// NOTE3:
// The event posting to uC-OS2 message queue occurs OUTSIDE critical section,
// which means that the remaining margin of available slots in the queue
// cannot be guaranteed. The problem is that interrupts and other tasks can
// preempt the event posting after checking the margin, but before actually
// posting the event to the queue.