2019-01-24 20:07:50 -05:00

242 lines
9.0 KiB
C++

/// @file
/// @brief QUTEST port for the EK-TM4C123GXL board
/// @ingroup qs
/// @cond
///***************************************************************************
/// Last updated for version 6.3.8
/// Last updated on 2019-01-24
///
/// Q u a n t u m L e a P s
/// ------------------------
/// Modern Embedded Software
///
/// Copyright (C) 2005-2019 Quantum Leaps, LLC. All rights reserved.
///
/// This program is open source software: you can redistribute it and/or
/// modify it under the terms of the GNU General Public License as published
/// by the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// Alternatively, this program may be distributed and modified under the
/// terms of Quantum Leaps commercial licenses, which expressly supersede
/// the GNU General Public License and are specifically designed for
/// licensees interested in retaining the proprietary status of their code.
///
/// This program is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with this program. If not, see <http://www.gnu.org/licenses/>.
///
/// Contact information:
/// https://state-machine.com
/// mailto:info@state-machine.com
///***************************************************************************
/// @endcond
#include "qpcpp.h"
#include "TM4C123GH6PM.h" // the device specific header (TI)
#include "rom.h" // the built-in ROM functions (TI)
#include "sysctl.h" // system control driver (TI)
#include "gpio.h" // GPIO driver (TI)
// add other drivers if necessary...
//Q_DEFINE_THIS_MODULE("qutest_port")
using namespace QP;
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE00
UART0_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
//Q_ASSERT_COMPILE(MAX_KERNEL_UNAWARE_CMSIS_PRI <= QF_AWARE_ISR_CMSIS_PRI);
// ISRs defined in this BSP --------------------------------------------------
extern "C" void UART0_IRQHandler(void); // prototype
// Local-scope objects -------------------------------------------------------
#define LED_RED (1U << 1)
#define LED_BLUE (1U << 2)
#define LED_GREEN (1U << 3)
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE (1U << 7)
#define UART_FR_RXFE (1U << 4)
#define UART_TXFIFO_DEPTH 16U
//............................................................................
extern "C" {
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "QF-unaware" meaning that it does not interact with
// the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
// QK_ISR_EXIT and they cannot post or publish events.
//
void UART0_IRQHandler(void) {
// while RX FIFO NOT empty
while ((UART0->FR & UART_FR_RXFE) == 0) {
uint32_t b = UART0->DR;
QP::QS::rxPut(b);
}
}
} // extern "C"
// QS callbacks ==============================================================
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
uint32_t tmp;
initBuf (qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// NOTE: SystemInit() already called from the startup code
// but SystemCoreClock needs to be updated
//
SystemCoreClockUpdate();
// configure the FPU usage by choosing one of the options... */
#if 0
// OPTION 1:
// Use the automatic FPU state preservation and the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in more than one task or
// in any ISRs. This setting is the safest and recommended, but requires
// extra stack space and CPU cycles.
//
FPU->FPCCR |= (1U << FPU_FPCCR_ASPEN_Pos) | (1U << FPU_FPCCR_LSPEN_Pos);
#else
// OPTION 2:
// Do NOT to use the automatic FPU state preservation and
// do NOT to use the FPU lazy stacking.
//
// NOTE:
// Use the following setting when FPU is used in ONE task only and not
// in any ISR. This setting is very efficient, but if more than one task
// (or ISR) start using the FPU, this can lead to corruption of the
// FPU registers. This option should be used with CAUTION.
//
FPU->FPCCR &= ~((1U << FPU_FPCCR_ASPEN_Pos)
| (1U << FPU_FPCCR_LSPEN_Pos));
#endif // FPU
// enable clock for to the peripherals used by this application...
SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF
// configure the LEDs and push buttons
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE);// set direction: output
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off
GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off
GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off
// configure the Buttons
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
// enable clock for UART0 and GPIOA (used by UART0 pins)
SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0
SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA
// configure UART0 pins for UART operation
tmp = (1U << 0) | (1U << 1);
GPIOA->DIR &= ~tmp;
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->AMSEL &= ~tmp; // disable analog function on the pins
GPIOA->AFSEL |= tmp; // enable ALT function on the pins
GPIOA->DEN |= tmp; // enable digital I/O on the pins
GPIOA->PCTL &= ~0x00U;
GPIOA->PCTL |= 0x11U;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = (0x3U << 5); // configure 8-N-1 operation
UART0->LCRH |= (0x1U << 4); // enable FIFOs
UART0->CTL = (1U << 0) // UART enable
| (1U << 8) // UART TX enable
| (1U << 9); // UART RX enable
// configure UART interrupts (for the RX channel)
UART0->IM |= (1U << 4) | (1U << 6); // enable RX and RX-TO interrupt
UART0->IFLS |= (0x2U << 2); // interrupt on RX FIFO half-full
// enable the UART RX interrupt...
NVIC_SetPriorityGrouping(0U);
NVIC_SetPriority(UART0_IRQn, UART0_PRIO);
NVIC_EnableIRQ(UART0_IRQn); // UART0 interrupt used for QS-RX
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
while ((block = getBlock(&fifo)) != (uint8_t *)0) {
GPIOF->DATA_Bits[LED_GREEN] = LED_GREEN;
// busy-wait as long as TX FIFO has data to transmit
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
GPIOF->DATA_Bits[LED_GREEN] = 0U;
}
}
//............................................................................
// callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
void QS::onTestLoop() {
rxPriv_.inTestLoop = true;
while (rxPriv_.inTestLoop) {
// turn the LED1 on and off (glow)
GPIOF->DATA_Bits[LED_BLUE] = LED_BLUE; // turn the Blue LED on
GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the Blue LED off
rxParse(); // parse all the received bytes
if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
uint8_t const *block;
block = getBlock(&fifo); // try to get next block to transmit
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
}
// set inTestLoop to true in case calls to QS_onTestLoop() nest,
// which can happen through the calls to QS_TEST_PAUSE().
rxPriv_.inTestLoop = true;
}