Quantum Leaps e0f9c36c2f 4.5.01
2012-08-14 18:00:48 -04:00

356 lines
14 KiB
C++

//////////////////////////////////////////////////////////////////////////////
// Product: BSP for DPP application with lwIP on EV-LM3S9665 board, QK kernel
// Last Updated for Version: 4.5.00
// Date of the Last Update: May 20, 2012
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// Quantum Leaps Web sites: http://www.quantum-leaps.com
// http://www.state-machine.com
// e-mail: info@quantum-leaps.com
//////////////////////////////////////////////////////////////////////////////
#include "qp_port.h" // QP port header file
#include "dpp.h" // application events and active objects
#include "bsp.h" // Board Support Package header file
extern "C" {
#include "lm3s_cmsis.h"
}
Q_DEFINE_THIS_FILE
#define USER_LED (1U << 0)
#define USER_BTN (1U << 1)
#define ETH0_LED (1U << 3)
#define ETH1_LED (1U << 2)
static uint32_t l_nTicks;
enum ISR_Priorities { // ISR priorities starting from the highest urgency
SYSTICK_PRIO,
ETHERNET_PRIO,
// ...
};
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
static uint8_t l_SysTick_Handler;
#define UART_BAUD_RATE 115200U
#define UART_TXFIFO_DEPTH 16U
#define UART_FR_TXFE (1U << 7)
#endif
//............................................................................
extern "C" void SysTick_Handler(void) __attribute__((__interrupt__));
extern "C" void SysTick_Handler(void) {
static uint32_t btn_debounced = 0U;
static uint8_t debounce_state = 0U;
uint32_t volatile tmp;
QK_ISR_ENTRY(); // inform QK about ISR entry
++l_nTicks; // count the number of clock ticks
#ifdef Q_SPY
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
#endif
QF::TICK(&l_SysTick_Handler); // process all armed time events
tmp = GPIOF->DATA_Bits[USER_BTN]; // read the User Button
switch (debounce_state) {
case 0:
if (tmp != btn_debounced) {
debounce_state = 1; // transition to the next state
}
break;
case 1:
if (tmp != btn_debounced) {
debounce_state = 2; // transition to the next state
}
else {
debounce_state = 0; // transition back to state 0
}
break;
case 2:
if (tmp != btn_debounced) {
debounce_state = 3; // transition to the next state
}
else {
debounce_state = 0; // transition back to state 0
}
break;
case 3:
if (tmp != btn_debounced) {
btn_debounced = tmp; // save the debounced button value
if (tmp == 0) { // is the button depressed?
static QEvt const bd = { BTN_DOWN_SIG, 0 };
QF::PUBLISH(&bd, &l_SysTick_Handler);
}
else {
static QEvt const bu = { BTN_UP_SIG, 0 };
QF::PUBLISH(&bu, &l_SysTick_Handler);
}
}
debounce_state = 0; // transition back to state 0
break;
}
QK_ISR_EXIT(); // inform QK about ISR exit
}
//............................................................................
void BSP_init(void) {
// set the system clock as specified in lm3s_config.h (20MHz from PLL)
SystemInit();
SYSCTL->RCGC2 |= (1 << 5); // enable clock to GPIOF (User and Eth LEDs)
__NOP();
__NOP();
// configure the pin driving the Ethernet LED
GPIOF->DIR &= ~(ETH0_LED | ETH1_LED); // set direction: hardware
GPIOF->AFSEL |= (ETH0_LED | ETH1_LED);
GPIOF->DR2R |= (ETH0_LED | ETH1_LED);
GPIOF->ODR &= ~(ETH0_LED | ETH1_LED);
GPIOF->PUR |= (ETH0_LED | ETH1_LED);
GPIOF->PDR &= ~(ETH0_LED | ETH1_LED);
GPIOF->DEN |= (ETH0_LED | ETH1_LED);
GPIOF->AMSEL &= ~(ETH0_LED | ETH1_LED);
// configure the pin driving the User LED
GPIOF->DIR |= USER_LED; // set direction: output
GPIOF->DR2R |= USER_LED;
GPIOF->DEN |= USER_LED;
GPIOF->AMSEL &= ~USER_LED;
GPIOF->DATA_Bits[USER_LED] = 0; // turn the LED off
// configure the pin connected to the Buttons
GPIOF->DIR &= ~USER_BTN; // set direction: input
GPIOF->DR2R |= USER_BTN;
GPIOF->ODR &= ~USER_BTN;
GPIOF->PUR |= USER_BTN;
GPIOF->PDR &= ~USER_BTN;
GPIOF->DEN |= USER_BTN;
GPIOF->AMSEL &= ~USER_BTN;
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
}
//............................................................................
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC);
// set priorities of all interrupts in the system...
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(Ethernet_IRQn, ETHERNET_PRIO);
NVIC_EnableIRQ(Ethernet_IRQn); // enable the Ethernet Interrupt
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QK::onIdle(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
GPIOF->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on
GPIOF->DATA_Bits[USER_LED] = 0; // turn the User LED off
QF_INT_ENABLE();
#ifdef Q_SPY
if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
uint8_t const *block;
QF_INT_DISABLE();
block = QS::getBlock(&fifo); // try to get next block to transmit
QF_INT_ENABLE();
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular MCU.
//
__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
(void)file; // avoid compiler warning
(void)line; // avoid compiler warning
QF_INT_DISABLE(); // make sure that all interrupts are disabled
for (;;) { // NOTE: replace the loop with reset for final version
}
}
//............................................................................
// error routine that is called if the CMSIS library encounters an error
extern "C" void assert_failed(char const *file, int line) {
Q_onAssert(file, line);
}
//............................................................................
// sys_now() is used in the lwIP stack
extern "C" uint32_t sys_now(void) {
return l_nTicks * (1000 / BSP_TICKS_PER_SEC);
}
//----------------------------------------------------------------------------
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[6*256]; // buffer for Quantum Spy
uint32_t tmp;
initBuf(qsBuf, sizeof(qsBuf));
// enable the peripherals used by the UART0
SYSCTL->RCGC1 |= (1 << 0); // enable clock to UART0
SYSCTL->RCGC2 |= (1 << 0); // enable clock to GPIOA
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// configure UART0 pins for UART operation
tmp = (1 << 0) | (1 << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
GPIOA->AMSEL &= ~tmp;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2;
UART0->IBRD = tmp / 64;
UART0->FBRD = tmp % 64;
UART0->LCRH = 0x60; // configure 8-bit operation
UART0->LCRH |= 0x10; // enable FIFOs
UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9);
QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_GET);
QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_GET);
QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
QS_FILTER_OFF(QS_QF_MPOOL_INIT);
QS_FILTER_OFF(QS_QF_MPOOL_GET);
QS_FILTER_OFF(QS_QF_MPOOL_PUT);
QS_FILTER_OFF(QS_QF_PUBLISH);
QS_FILTER_OFF(QS_QF_NEW);
QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // flag not set?
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) {
// busy-wait until TX FIFO empty
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
}
}
#endif // Q_SPY
//--------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////
// NOTE01:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//