mirror of
https://github.com/QuantumLeaps/qpcpp.git
synced 2025-01-21 05:52:58 +08:00
348 lines
14 KiB
C++
348 lines
14 KiB
C++
//////////////////////////////////////////////////////////////////////////////
|
|
// Product: BSP for DPP application with lwIP on EV-LM3S9665 board, QK kernel
|
|
// Last Updated for Version: 4.5.00
|
|
// Date of the Last Update: May 20, 2012
|
|
//
|
|
// Q u a n t u m L e a P s
|
|
// ---------------------------
|
|
// innovating embedded systems
|
|
//
|
|
// Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved.
|
|
//
|
|
// This program is open source software: you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as published
|
|
// by the Free Software Foundation, either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Alternatively, this program may be distributed and modified under the
|
|
// terms of Quantum Leaps commercial licenses, which expressly supersede
|
|
// the GNU General Public License and are specifically designed for
|
|
// licensees interested in retaining the proprietary status of their code.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// Contact information:
|
|
// Quantum Leaps Web sites: http://www.quantum-leaps.com
|
|
// http://www.state-machine.com
|
|
// e-mail: info@quantum-leaps.com
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
#include "qp_port.h" // QP port header file
|
|
#include "dpp.h" // application events and active objects
|
|
#include "bsp.h" // Board Support Package header file
|
|
|
|
#include "lm3s_cmsis.h"
|
|
|
|
Q_DEFINE_THIS_FILE
|
|
|
|
#define USER_LED (1U << 0)
|
|
#define USER_BTN (1U << 1)
|
|
|
|
#define ETH0_LED (1U << 3)
|
|
#define ETH1_LED (1U << 2)
|
|
|
|
static uint32_t l_nTicks;
|
|
|
|
enum ISR_Priorities { // ISR priorities starting from the highest urgency
|
|
SYSTICK_PRIO,
|
|
ETHERNET_PRIO,
|
|
// ...
|
|
};
|
|
|
|
#ifdef Q_SPY
|
|
|
|
QSTimeCtr QS_tickTime_;
|
|
QSTimeCtr QS_tickPeriod_;
|
|
static uint8_t l_SysTick_Handler;
|
|
|
|
#define UART_BAUD_RATE 115200U
|
|
#define UART_TXFIFO_DEPTH 16U
|
|
#define UART_FR_TXFE (1U << 7)
|
|
|
|
#endif
|
|
|
|
//............................................................................
|
|
extern "C" void SysTick_Handler(void) {
|
|
static uint32_t btn_debounced = 0U;
|
|
static uint8_t debounce_state = 0U;
|
|
uint32_t volatile tmp;
|
|
|
|
QK_ISR_ENTRY(); // inform QK about ISR entry
|
|
|
|
++l_nTicks; // count the number of clock ticks
|
|
|
|
#ifdef Q_SPY
|
|
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
|
|
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
|
|
#endif
|
|
|
|
QF::TICK(&l_SysTick_Handler); // process all armed time events
|
|
|
|
tmp = GPIOF->DATA_Bits[USER_BTN]; // read the User Button
|
|
switch (debounce_state) {
|
|
case 0:
|
|
if (tmp != btn_debounced) {
|
|
debounce_state = 1U; // transition to the next state
|
|
}
|
|
break;
|
|
case 1:
|
|
if (tmp != btn_debounced) {
|
|
debounce_state = 2U; // transition to the next state
|
|
}
|
|
else {
|
|
debounce_state = 0U; // transition back to state 0
|
|
}
|
|
break;
|
|
case 2:
|
|
if (tmp != btn_debounced) {
|
|
debounce_state = 3U; // transition to the next state
|
|
}
|
|
else {
|
|
debounce_state = 0U; // transition back to state 0
|
|
}
|
|
break;
|
|
case 3:
|
|
if (tmp != btn_debounced) {
|
|
btn_debounced = tmp; // save the debounced button value
|
|
if (tmp == 0U) { // is the button depressed?
|
|
static QEvt const bd = { BTN_DOWN_SIG, 0U, 0U };
|
|
QF::PUBLISH(&bd, &l_SysTick_Handler);
|
|
}
|
|
else {
|
|
static QEvt const bu = { BTN_UP_SIG, 0U, 0U };
|
|
QF::PUBLISH(&bu, &l_SysTick_Handler);
|
|
}
|
|
}
|
|
debounce_state = 0U; // transition back to state 0
|
|
break;
|
|
}
|
|
|
|
QK_ISR_EXIT(); // inform QK about ISR exit
|
|
}
|
|
|
|
//............................................................................
|
|
void BSP_init(void) {
|
|
// set the system clock as specified in lm3s_config.h (20MHz from PLL)
|
|
SystemInit();
|
|
|
|
SYSCTL->RCGC2 |= (1U << 5); // enable clock to GPIOF (User and Eth LEDs)
|
|
__NOP();
|
|
__NOP();
|
|
// configure the pin driving the Ethernet LED
|
|
GPIOF->DIR &= ~(ETH0_LED | ETH1_LED); // set direction: hardware
|
|
GPIOF->AFSEL |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->DR2R |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->ODR &= ~(ETH0_LED | ETH1_LED);
|
|
GPIOF->PUR |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->PDR &= ~(ETH0_LED | ETH1_LED);
|
|
GPIOF->DEN |= (ETH0_LED | ETH1_LED);
|
|
GPIOF->AMSEL &= ~(ETH0_LED | ETH1_LED);
|
|
|
|
// configure the pin driving the User LED
|
|
GPIOF->DIR |= USER_LED; // set direction: output
|
|
GPIOF->DR2R |= USER_LED;
|
|
GPIOF->DEN |= USER_LED;
|
|
GPIOF->AMSEL &= ~USER_LED;
|
|
GPIOF->DATA_Bits[USER_LED] = 0U; // turn the LED off
|
|
|
|
// configure the pin connected to the Buttons
|
|
GPIOF->DIR &= ~USER_BTN; // set direction: input
|
|
GPIOF->DR2R |= USER_BTN;
|
|
GPIOF->ODR &= ~USER_BTN;
|
|
GPIOF->PUR |= USER_BTN;
|
|
GPIOF->PDR &= ~USER_BTN;
|
|
GPIOF->DEN |= USER_BTN;
|
|
GPIOF->AMSEL &= ~USER_BTN;
|
|
|
|
if (!QS_INIT((void *)0)) { // initialize the QS software tracing
|
|
Q_ERROR();
|
|
}
|
|
|
|
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
|
|
}
|
|
//............................................................................
|
|
void QF::onStartup(void) {
|
|
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
|
|
SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC);
|
|
|
|
// set priorities of all interrupts in the system...
|
|
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
|
|
NVIC_SetPriority(Ethernet_IRQn, ETHERNET_PRIO);
|
|
|
|
NVIC_EnableIRQ(Ethernet_IRQn); // enable the Ethernet Interrupt
|
|
}
|
|
//............................................................................
|
|
void QF::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
void QK::onIdle(void) {
|
|
|
|
// toggle the User LED on and then off, see NOTE01
|
|
QF_INT_DISABLE();
|
|
GPIOF->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on
|
|
GPIOF->DATA_Bits[USER_LED] = 0U; // turn the User LED off
|
|
QF_INT_ENABLE();
|
|
|
|
#ifdef Q_SPY
|
|
if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done?
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
|
|
uint8_t const *block;
|
|
|
|
QF_INT_DISABLE();
|
|
block = QS::getBlock(&fifo); // try to get next block to transmit
|
|
QF_INT_ENABLE();
|
|
|
|
while (fifo-- != 0U) { // any bytes in the block?
|
|
UART0->DR = *block++; // put into the FIFO
|
|
}
|
|
}
|
|
#elif defined NDEBUG
|
|
// Put the CPU and peripherals to the low-power mode.
|
|
// you might need to customize the clock management for your application,
|
|
// see the datasheet for your particular MCU.
|
|
//
|
|
__WFI(); // Wait-For-Interrupt
|
|
#endif
|
|
}
|
|
|
|
//............................................................................
|
|
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
|
|
(void)file; // avoid compiler warning
|
|
(void)line; // avoid compiler warning
|
|
QF_INT_DISABLE(); // make sure that all interrupts are disabled
|
|
for (;;) { // NOTE: replace the loop with reset for final version
|
|
}
|
|
}
|
|
//............................................................................
|
|
// sys_now() is used in the lwIP stack
|
|
extern "C" uint32_t sys_now(void) {
|
|
return l_nTicks * (1000U / BSP_TICKS_PER_SEC);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
#ifdef Q_SPY
|
|
//............................................................................
|
|
bool QS::onStartup(void const *arg) {
|
|
static uint8_t qsBuf[6*256]; // buffer for Quantum Spy
|
|
uint32_t tmp;
|
|
initBuf(qsBuf, sizeof(qsBuf));
|
|
|
|
// enable the peripherals used by the UART0
|
|
SYSCTL->RCGC1 |= (1U << 0); // enable clock to UART0
|
|
SYSCTL->RCGC2 |= (1U << 0); // enable clock to GPIOA
|
|
__NOP(); // wait after enabling clocks
|
|
__NOP();
|
|
__NOP();
|
|
|
|
// configure UART0 pins for UART operation
|
|
tmp = (1U << 0) | (1U << 1);
|
|
GPIOA->DIR &= ~tmp;
|
|
GPIOA->AFSEL |= tmp;
|
|
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
|
|
GPIOA->SLR &= ~tmp;
|
|
GPIOA->ODR &= ~tmp;
|
|
GPIOA->PUR &= ~tmp;
|
|
GPIOA->PDR &= ~tmp;
|
|
GPIOA->DEN |= tmp;
|
|
GPIOA->AMSEL &= ~tmp;
|
|
|
|
// configure the UART for the desired baud rate, 8-N-1 operation
|
|
tmp = (((SystemFrequency * 8U) / UART_BAUD_RATE) + 1U) / 2U;
|
|
UART0->IBRD = tmp / 64U;
|
|
UART0->FBRD = tmp % 64U;
|
|
UART0->LCRH = 0x60U; // configure 8-bit operation
|
|
UART0->LCRH |= 0x10U; // enable FIFOs
|
|
UART0->CTL |= (1U << 0) | (1U << 8) | (1U << 9);
|
|
|
|
QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC;
|
|
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
|
|
|
|
// setup the QS filters...
|
|
QS_FILTER_ON(QS_ALL_RECORDS);
|
|
|
|
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
|
|
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
|
|
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
|
|
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
|
|
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
|
|
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
|
|
// QS_FILTER_OFF(QS_QEP_TRAN);
|
|
// QS_FILTER_OFF(QS_QEP_IGNORED);
|
|
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_GET);
|
|
QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
|
|
QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
|
|
QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
|
|
QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
|
|
QS_FILTER_OFF(QS_QF_EQUEUE_GET);
|
|
QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
|
|
QS_FILTER_OFF(QS_QF_MPOOL_INIT);
|
|
QS_FILTER_OFF(QS_QF_MPOOL_GET);
|
|
QS_FILTER_OFF(QS_QF_MPOOL_PUT);
|
|
QS_FILTER_OFF(QS_QF_PUBLISH);
|
|
QS_FILTER_OFF(QS_QF_NEW);
|
|
QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
|
|
QS_FILTER_OFF(QS_QF_GC);
|
|
// QS_FILTER_OFF(QS_QF_TICK);
|
|
QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
|
|
QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
|
|
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
|
|
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
|
|
QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
|
|
QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
|
|
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
|
|
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
|
|
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
|
|
QS_FILTER_OFF(QS_QF_ISR_EXIT);
|
|
|
|
return true; // return success
|
|
}
|
|
//............................................................................
|
|
void QS::onCleanup(void) {
|
|
}
|
|
//............................................................................
|
|
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked
|
|
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0U) { // flag not set?
|
|
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
else { // the rollover occured, but the SysTick_ISR did not run yet
|
|
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
|
|
}
|
|
}
|
|
//............................................................................
|
|
void QS::onFlush(void) {
|
|
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
|
|
uint8_t const *block;
|
|
while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) {
|
|
// busy-wait until TX FIFO empty
|
|
while ((UART0->FR & UART_FR_TXFE) == 0) {
|
|
}
|
|
|
|
while (fifo-- != 0U) { // any bytes in the block?
|
|
UART0->DR = *block++; // put into the TX FIFO
|
|
}
|
|
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
|
|
}
|
|
}
|
|
#endif // Q_SPY
|
|
//--------------------------------------------------------------------------*/
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// NOTE01:
|
|
// The User LED is used to visualize the idle loop activity. The brightness
|
|
// of the LED is proportional to the frequency of invcations of the idle loop.
|
|
// Please note that the LED is toggled with interrupts locked, so no interrupt
|
|
// execution time contributes to the brightness of the User LED.
|
|
//
|