Quantum Leaps e0f9c36c2f 4.5.01
2012-08-14 18:00:48 -04:00

421 lines
17 KiB
C++

//////////////////////////////////////////////////////////////////////////////
// Product: "Fly 'n' Shoot" game example with cooperative "Vanilla" kernel
// Last Updated for Version: 4.5.00
// Date of the Last Update: May 20, 2012
//
// Q u a n t u m L e a P s
// ---------------------------
// innovating embedded systems
//
// Copyright (C) 2002-2012 Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// Quantum Leaps Web sites: http://www.quantum-leaps.com
// http://www.state-machine.com
// e-mail: info@quantum-leaps.com
//////////////////////////////////////////////////////////////////////////////
#include "qp_port.h"
#include "game.h"
#include "bsp.h"
#include "lm3s_cmsis.h"
#include "display96x16x1.h"
Q_DEFINE_THIS_FILE
enum ISR_Priorities { // ISR priorities starting from the highest urgency
GPIOPORTA_PRIO,
ADCSEQ3_PRIO,
SYSTICK_PRIO,
// ...
};
#define ADC_TRIGGER_TIMER 0x00000005
#define ADC_CTL_IE 0x00000040
#define ADC_CTL_END 0x00000020
#define ADC_CTL_CH0 0x00000000
#define ADC_SSFSTAT0_EMPTY 0x00000100
#define UART_FR_TXFE 0x00000080
// Local-scope objects -------------------------------------------------------
#define PUSH_BUTTON (1 << 4)
#define USER_LED (1 << 5)
#ifdef Q_SPY
QSTimeCtr QS_tickTime_;
QSTimeCtr QS_tickPeriod_;
uint8_t l_SysTick_Handler;
uint8_t l_ADCSeq3_IRQHandler;
#define UART_BAUD_RATE 115200
#define UART_TXFIFO_DEPTH 16
#endif
//............................................................................
extern "C" void SysTick_Handler(void) __attribute__((__interrupt__));
extern "C" void SysTick_Handler(void) {
#ifdef Q_SPY
uint32_t dummy = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
#endif
QF::TICK(&l_SysTick_Handler); // process all armed time events
static QEvt const tickEvt = { TIME_TICK_SIG, 0 };
QF::PUBLISH(&tickEvt, &l_SysTick_Handler); // publish to all subscribers
}
//............................................................................
extern "C" void ADCSeq3_IRQHandler(void) __attribute__((__interrupt__));
extern "C" void ADCSeq3_IRQHandler(void) {
static uint32_t adcLPS = 0; // Low-Pass-Filtered ADC reading
static uint32_t wheel = 0; // the last wheel position
static uint32_t btn_debounced = 0;
static uint8_t debounce_state = 0;
uint32_t tmp;
ADC->ISC = (1 << 3); // clear the ADCSeq3 interrupt
// the ADC Sequence 3 FIFO must have a sample
Q_ASSERT((ADC->SSFSTAT3 & ADC_SSFSTAT0_EMPTY) == 0);
tmp = ADC->SSFIFO3; // read the data from the ADC
// 1st order low-pass filter: time constant ~= 2^n samples
// TF = (1/2^n)/(z-((2^n - 1)/2^n)),
// eg, n=3, y(k+1) = y(k) - y(k)/8 + x(k)/8 => y += (x - y)/8
adcLPS += (((int)tmp - (int)adcLPS + 4) >> 3); // Low-Pass-Filter
// compute the next position of the wheel */
tmp = (((1 << 10) - adcLPS)*(BSP_SCREEN_HEIGHT - 2)) >> 10;
if (tmp != wheel) { // did the wheel position change?
ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG);
ope->x = (uint8_t)GAME_SHIP_X; // x-position is fixed
ope->y = (uint8_t)tmp;
AO_Ship->POST(ope, &l_ADCSeq3_IRQHandler); // post to the Ship
wheel = tmp; // save the last position of the wheel
}
tmp = GPIOC->DATA_Bits[PUSH_BUTTON]; // read the push btn
switch (debounce_state) {
case 0:
if (tmp != btn_debounced) {
debounce_state = 1; // transition to the next state
}
break;
case 1:
if (tmp != btn_debounced) {
debounce_state = 2; // transition to the next state
}
else {
debounce_state = 0; // transition back to state 0
}
break;
case 2:
if (tmp != btn_debounced) {
debounce_state = 3; // transition to the next state
}
else {
debounce_state = 0; // transition back to state 0
}
break;
case 3:
if (tmp != btn_debounced) {
btn_debounced = tmp; // save the debounced button value
if (tmp == 0) { // is the button depressed?
static QEvt const fireEvt = { PLAYER_TRIGGER_SIG, 0 };
QF::PUBLISH(&fireEvt, &l_ADCSeq3_IRQHandler);
}
}
debounce_state = 0; // transition back to state 0
break;
}
}
//............................................................................
void BSP_init(void) {
// set the system clock as specified in lm3s_config.h (20MHz from PLL)
SystemInit();
// enable clock to the peripherals used by the application
SYSCTL->RCGC0 |= (1 << 16); // enable clock to ADC
SYSCTL->RCGC1 |= (1 << 16) | (1 << 17); // enable clock to TIMER0 & 1
SYSCTL->RCGC2 |= (1 << 0) | (1 << 2); // enable clock to GPIOA & C
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// Configure the ADC Sequence 3 to sample the potentiometer when the
// timer expires. Set the sequence priority to 0 (highest).
ADC->EMUX = (ADC->EMUX & ~(0xF << (3*4)))
| (ADC_TRIGGER_TIMER << (3*4));
ADC->SSPRI = (ADC->SSPRI & ~(0xF << (3*4)))
| (0 << (3*4));
// set ADC Sequence 3 step to 0
ADC->SSMUX3 = (ADC->SSMUX3 & ~(0xF << (0*4)))
| ((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) << (0*4));
ADC->SSCTL3 = (ADC->SSCTL3 & ~(0xF << (0*4)))
| (((ADC_CTL_CH0 | ADC_CTL_IE | ADC_CTL_END) >> 4) <<(0*4));
ADC->ACTSS |= (1 << 3);
// configure TIMER1 to trigger the ADC to sample the potentiometer
TIMER1->CTL &= ~((1 << 0) | (1 << 16));
TIMER1->CFG = 0;
TIMER1->TAMR = 0x02;
TIMER1->TAILR = SystemFrequency / 120;
TIMER1->CTL |= 0x02;
TIMER1->CTL |= 0x20;
// configure the LED and push button
GPIOC->DIR |= USER_LED; // set direction: output
GPIOC->DEN |= USER_LED; // digital enable
GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off
GPIOC->DIR &= ~PUSH_BUTTON; // set direction: input
GPIOC->DEN |= PUSH_BUTTON; // digital enable
Display96x16x1Init(1); // initialize the OLED display
if (QS_INIT((void *)0) == 0) { // initialize the QS software tracing
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_SysTick_Handler);
QS_OBJ_DICTIONARY(&l_ADCSeq3_IRQHandler);
}
//............................................................................
void BSP_drawBitmap(uint8_t const *bitmap, uint8_t width, uint8_t height) {
Display96x16x1ImageDraw(bitmap, 0, 0, width, (height >> 3));
}
//............................................................................
void BSP_drawNString(uint8_t x, uint8_t y, char const *str) {
Display96x16x1StringDraw(str, x, y);
}
//............................................................................
void BSP_updateScore(uint16_t score) {
// no room on the OLED display of the EV-LM3S811 board for the score
}
//............................................................................
void BSP_displayOn(void) {
Display96x16x1DisplayOn();
}
//............................................................................
void BSP_displayOff(void) {
Display96x16x1DisplayOff();
}
//............................................................................
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
SysTick_Config(SystemFrequency / BSP_TICKS_PER_SEC);
// set priorities of all interrupts in the system...
NVIC_SetPriority(SysTick_IRQn, SYSTICK_PRIO);
NVIC_SetPriority(ADCSeq3_IRQn, ADCSEQ3_PRIO);
NVIC_SetPriority(GPIOPortA_IRQn, GPIOPORTA_PRIO);
NVIC_EnableIRQ(ADCSeq3_IRQn);
NVIC_EnableIRQ(GPIOPortA_IRQn);
ADC->ISC = (1 << 3);
ADC->IM |= (1 << 3);
TIMER1->CTL |= ((1 << 0) | (1 << 16)); // enable TIMER1
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
void QF::onIdle(void) { // entered with interrupts LOCKED, see NOTE01
// toggle the User LED on and then off, see NOTE02
GPIOC->DATA_Bits[USER_LED] = USER_LED; // turn the User LED on
GPIOC->DATA_Bits[USER_LED] = 0; // turn the User LED off
#ifdef Q_SPY
QF_INT_ENABLE();
if ((UART0->FR & UART_FR_TXFE) != 0) { // TX done?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
QF_INT_DISABLE();
uint8_t const *block = QS::getBlock(&fifo); // try to get next block
QF_INT_ENABLE();
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
__WFI(); // Wait-For-Interrupt
QF_INT_ENABLE();
#else
QF_INT_ENABLE();
#endif
}
//............................................................................
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
(void)file; // avoid compiler warning
(void)line; // avoid compiler warning
QF_INT_DISABLE(); // make sure that all interrupts are disabled
for (;;) { // NOTE: replace the loop with reset for final version
}
}
//............................................................................
// error routine that is called if the CMSIS library encounters an error
extern "C" void assert_failed(char const *file, int line) {
Q_onAssert(file, line);
}
//----------------------------------------------------------------------------
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsBuf[6*256]; // buffer for Quantum Spy
uint32_t tmp;
initBuf(qsBuf, sizeof(qsBuf));
// enable the peripherals used by the UART0
SYSCTL->RCGC1 |= (1 << 0); // enable clock to UART0
SYSCTL->RCGC2 |= (1 << 0); // enable clock to GPIOA
__NOP(); // wait after enabling clocks
__NOP();
__NOP();
// configure UART0 pins for UART operation
tmp = (1 << 0) | (1 << 1);
GPIOA->DIR &= ~tmp;
GPIOA->AFSEL |= tmp;
GPIOA->DR2R |= tmp; // set 2mA drive, DR4R and DR8R are cleared
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->DEN |= tmp;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((SystemFrequency * 8) / UART_BAUD_RATE) + 1) / 2;
UART0->IBRD = tmp / 64;
UART0->FBRD = tmp % 64;
UART0->LCRH = 0x60; // configure 8-N-1 operation
UART0->LCRH |= 0x10;
UART0->CTL |= (1 << 0) | (1 << 8) | (1 << 9);
QS_tickPeriod_ = SystemFrequency / BSP_TICKS_PER_SEC;
QS_tickTime_ = QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters...
QS_FILTER_ON(QS_ALL_RECORDS);
// QS_FILTER_OFF(QS_QEP_STATE_EMPTY);
// QS_FILTER_OFF(QS_QEP_STATE_ENTRY);
// QS_FILTER_OFF(QS_QEP_STATE_EXIT);
// QS_FILTER_OFF(QS_QEP_STATE_INIT);
// QS_FILTER_OFF(QS_QEP_INIT_TRAN);
// QS_FILTER_OFF(QS_QEP_INTERN_TRAN);
// QS_FILTER_OFF(QS_QEP_TRAN);
// QS_FILTER_OFF(QS_QEP_IGNORED);
QS_FILTER_OFF(QS_QF_ACTIVE_ADD);
QS_FILTER_OFF(QS_QF_ACTIVE_REMOVE);
QS_FILTER_OFF(QS_QF_ACTIVE_SUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_UNSUBSCRIBE);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_FIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_POST_LIFO);
QS_FILTER_OFF(QS_QF_ACTIVE_GET);
QS_FILTER_OFF(QS_QF_ACTIVE_GET_LAST);
QS_FILTER_OFF(QS_QF_EQUEUE_INIT);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_FIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_POST_LIFO);
QS_FILTER_OFF(QS_QF_EQUEUE_GET);
QS_FILTER_OFF(QS_QF_EQUEUE_GET_LAST);
QS_FILTER_OFF(QS_QF_MPOOL_INIT);
QS_FILTER_OFF(QS_QF_MPOOL_GET);
QS_FILTER_OFF(QS_QF_MPOOL_PUT);
QS_FILTER_OFF(QS_QF_PUBLISH);
QS_FILTER_OFF(QS_QF_NEW);
QS_FILTER_OFF(QS_QF_GC_ATTEMPT);
QS_FILTER_OFF(QS_QF_GC);
// QS_FILTER_OFF(QS_QF_TICK);
QS_FILTER_OFF(QS_QF_TIMEEVT_ARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_AUTO_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM_ATTEMPT);
QS_FILTER_OFF(QS_QF_TIMEEVT_DISARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_REARM);
QS_FILTER_OFF(QS_QF_TIMEEVT_POST);
QS_FILTER_OFF(QS_QF_CRIT_ENTRY);
QS_FILTER_OFF(QS_QF_CRIT_EXIT);
QS_FILTER_OFF(QS_QF_ISR_ENTRY);
QS_FILTER_OFF(QS_QF_ISR_EXIT);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // invoked with interrupts locked
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // flag not set?
return QS_tickTime_ - (QSTimeCtr)SysTick->VAL;
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return QS_tickTime_ + QS_tickPeriod_ - (QSTimeCtr)SysTick->VAL;
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
while ((block = QS::getBlock(&fifo)) != (uint8_t *)0) {
// busy-wait until TX FIFO empty
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
while (fifo-- != 0) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
//////////////////////////////////////////////////////////////////////////////
// NOTE01:
// The QF_onIdle() callback is called with interrupts locked, because the
// determination of the idle condition might change by any interrupt posting
// an event. QF::onIdle() must internally unlock interrupts, ideally
// atomically with putting the CPU to the power-saving mode.
//
// NOTE02:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//